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Image co-localization – co-occurrence versus correlation
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ABSTRACT
Fluorescence image co-localization analysis is widely utilized to
suggest biomolecular interaction. However, there exists some
confusion as to its correct implementation and interpretation. In
reality, co-localization analysis consists of at least two distinct sets of
methods, termed co-occurrence and correlation. Each approach has
inherent and often contrasting strengths and weaknesses. Yet,
neither one can be considered to always be preferable for any given
application. Rather, each method is most appropriate for answering
different types of biological question. This Review discusses the main
factors affecting multicolor image co-occurrence and correlation
analysis, while giving insight into the types of biological behavior that
are better suited to one approach or the other. Further, the limits of
pixel-based co-localization analysis are discussed in the context of
increasingly popular super-resolution imaging techniques.

KEY WORDS: Image analysis, Manders, Pearson, Co-localization,
Fluorescence microscopy

Introduction
A common task in cell biology consists of assessing to what extent
two biomolecules or structures are associated with each other within
a cell. Optical microscopy offers a sensitive and specific means to
infer such relationships. While various distinct approaches that
attempt to characterize biomolecular associations from multi-color
fluorescence images have been developed, they are all collectively
referred to as co-localization analysis. Previous reviews on this
subject have generally given a survey of various co-localization
methods, with recommendations for use based on image
characteristics (Dunn et al., 2011; Bolte and Cordelier̀es, 2006;
Zinchuk and Grossenbacher-Zinchuk, 2001; Costes et al., 2004;
Zinchuk et al., 2007), or advocated for the superiority of one
approach over another (Adler and Parmryd, 2010). However, the
various methods discussed here and previously measure two distinct
phenomena: co-occurrence and correlation. The former describes
the extent of spatial overlap between two fluorophores. The latter
determines the degree to which the abundance of two spatially
overlapping fluorophores are related to each other. Determining the
most appropriate metric, therefore, should be guided by the nature of
the question being posed. Co-occurrence measurements are often
best utilized to determine what proportion of a molecule is present
within particular area, compartment or organelle. It does not give
insight into any concentration relationship between two molecules.
Correlation analysis is most applicable when assessing a functional
or stoichiometric relationship between two overlapping species. It
does not, however, measure the extent of their spatial co-occurrence.
Both measures can supply complementary information about a

biological system. This Review explores how co-localization can be
more strategically employed. We outline strengths and pitfalls of
correlation and co-occurrence, both in terms of what phenomena
they measure, as well as common sources of inaccuracies. Finally,
we relate these methods to emerging super-resolution imaging
techniques and introduce new approaches based on spatial point
statistics.

Prerequisites for analysis
It is important to note that neither image correlation nor
co-occurrence are direct measures of molecular interaction. The
resolving power of a microscope is, conventionally, limited to
approximately half the wavelength of emitting light (Abbe, 1873),
while typical interaction distances between bio-molecules are
<10 nm. Even with the advent of super-resolution imaging
techniques, intramolecular interactions cannot be unambiguously
observed. Only nearfield biophysical techniques, such as Förster
resonant energy transfer (FRET), can be used to directly measure
molecular interactions (Truong and Ikura, 2001; Piston and
Kremers, 2007). Nevertheless, correlation and co-occurrence offer
a means to infer such relationships.

In this context, optimized sample preparation (Wysocki and
Lavis, 2011; Grimm et al., 2015; Shaner et al., 2005; Chudakov
et al., 2010) and proper image acquisition settings are both essential
for accurate analysis (North, 2006; Waters, 2009; Stelzer, 1998;
Nakamura, 2005). In addition, post-acquisition corrections should
be made for inhomogeneous illumination (Sternberg, 1983;
Dickinson et al., 2002; Leong et al., 2003). Co-registration of the
component images either due to chromatic aberration, focal plane
drift or multi camera acquisitions (Lange et al., 2008), may also be
necessary (Zitová and Flusser, 2003). Accurate measurements also
depend on digital removal of unwanted, non-biologically relevant
signal (Wu et al., 2010; Young et al., 2004; Russ and Neal, 2016).
Finally, it is critical to isolate the pixels that contain signal, while
ignoring those pixels containing predominantly noise, which can be
achieved via thresholding (Mehmet Sezgin and Bülent Sankur,
2004; Nakagawa and Rosenfeld, 1979; Glasbey, 1993; Otsu, 1975;
Pun, 1980; Russ and Russ, 1987).

Area and object analysis
At its simplest, co-localization analysis can consist of measuring the
area of overlap between the signals of interest in two images. Fig. 1
illustrates a hypothetical example of the measurement of overlap
between areas or objects. Fig. 1A shows a two-color image of
multiple objects that are significantly larger than the diffraction
limit, with spatial overlap between the Color 1 (Fig. 1B) and Color 2
(Fig. 1C) images, shown separately for clarity. An appropriate
signal threshold intensity was calculated with the commonly used
Otsu’s method (Otsu, 1975) and all pixels below this value were
assigned a zero value. The remaining pixels in the Color 1 and Color
2 images are shown in white in Fig. 1D and Fig. 1E, respectively.
The area of overlap is then found by determining which pixel
locations contain non-zero values in both images. Referred to as the
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intersection of the two images, the result is shown in Fig. 1F. The
overlap area, however, is most meaningful as a relative measure. For
instance, the intersection area (Fig. 1F) as a fraction of the
segmented Color 1 image area (Fig. 1D) indicates the fractional
overlap of Color 1 with Color 2. Likewise, the intersection area as a
fraction of the segmented Color 2 image area (Fig. 1E) specifies the
fractional overlap of Color 2 with Color 1. Finally, the overlapping
area can be expressed as a fraction of the total area, or the union of
the Color 1 and Color 2 images (Fig. 1G).
The area overlap analysis can be extended further. As suggested

by Fig. 1D and E, contiguous areas of above-threshold pixels can be
grouped into discrete objects, with associated properties such as
size, location and shape (Wu et al., 2010). This allows a statistical
analysis of the relative distribution of objects across image color
channels. For example, the distribution of distances from each
object’s center-of-mass in one color channel to its nearest neighbor
in the other channel can yield meaningful insight when compared to
negative controls or over time (Bolte and Cordelier̀es, 2006). To
assess the significance of any changes in object interaction,
Helmuth et al., proposed a rigorous significance testing
framework (Helmuth et al., 2010).
However, the limits of diffraction must always be considered.

Assuming a diffraction-limited resolution of ∼300 nm, objects –
such as whole cells, nuclei and larger organelles – can lend
themselves well to this type of analysis. However, smaller
structures, such as actin filaments, microtubules, small vesicles, or
single molecules or molecular clusters, can cause misinterpretation
since their apparent sizes are determined by diffraction.

Co-occurrence: Manders’ coefficients
Aside from the threshold calculations used in the example in Fig. 1,
there is no consideration of the individual intensity values in the
areas that contain both signals of interest. Manders introduced a
method that determines the overlap of two images while taking into
account pixel intensity, which we term co-occurrence (Manders
et al., 1993). In other words, it accounts for the total amount (or
abundance) of fluorophores that overlap with each other. This
results in two coefficients, such that

M1 ¼
Pn

i¼1 xi;colocPn
i¼1 xi

; ð1Þ

where

xi;coloc ¼ xi if yi . 0
0 if yi ¼ 0

� �
ð2Þ

and:

M2 ¼
Pn

i¼1 yi;colocPn
i¼1 yi

; ð3Þ

where

yi;coloc ¼ yi if xi . 0
0 if xi ¼ 0

� �
: ð4Þ

Here, xi and yi refer to the i
th above-threshold pixel value in the color

1 and color 2 images, respectively, with n total pixels in each image
being analyzed. As noted, xi,coloc and yi,coloc may have non-zero
values only when the corresponding yi and xi, respectively, are also
above threshold. Thus, M1 can be defined as the co-occurrence
fraction of color 1 with color 2. Likewise, M2 is the co-occurrence
fraction of color 2 with color 1. Furthermore, Manders proposed an
overall overlap coefficient (MOC), such that

MOC ¼
Pn

i¼1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p ; ð5Þ

where xi, yi and n are defined as previously. Manders’ coefficients
provide an important distinction over the simpler area overlap
calculation (Fig. 1) because they give greater importance to brighter
pixels and less weight to values near zero or the threshold. Using
Manders’ approach will ameliorate (but not ignore) the effects of
inadvertently including dim unwanted signals, such as
autofluorescence or other near-threshold signals. However,
images that contain bright unwanted signal (such as that from
high non-specific labeling, large camera offset, or out-of-focus
light) or large amounts of image saturation due to poor acquisition
parameters will inflate the MOC value. Such artefacts can give the
impression of greater co-occurrence than is actually present.

However, the MOC is relatively insensitive to differences
in signal-to-noise ratio (SNR) (Manders et al., 1993). Since
noise will cause a random deviation in the intensity of each pixel,
the effect of increasing noise relative to signal is largely averted

Merged

Color 1

Color 2

Threshold/segment

Threshold/segment

Intersection

Union
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B D F
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Fig. 1. Area overlap analysis is a
simple means to assess biological
associations. (A) A simulated two-color
image indicates the presence of some
overlap between red and green pixels.
(B,C) Individual color channels are
subject to threshold application to isolate
the signals of interest. (D,E) Pixels
containing signal are shown in white,
whereas the remaining area is given a
value of zero intensity. (F,G) Pixel
locations containing signal in both images
(intersection, F), whereas pixel locations
containing signal in either image (union,
G). Shown below, the fractional area in F,
relative to the areas in D, E and G, were
found to be 0.138, 0.595 and 0.126,
respectively.
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when summing over a large number of pixels during calculation of
the M1, M2 or MOC coefficients. Fig. 2A illustrates this
phenomenon. As can be seen, a reduction of >50% in SNR (from
19 to 8) results in only a relatively small change in theMOC value of
3%.
While being robust against fluctuating SNR, an accurate MOC

value is contingent on effective removal of unwanted signal.
Because undesirable signal sources will increase pixel intensity
(even in areas that also contain the signal of interest), they should
always be carefully subtracted from the image. Fig. 2B illustrates
this effect. On the left, a hypothetical image is shown that contains
only the signal of interest and accompanying noise, which exhibits a
MOC value of 0.691. A relatively dim out-of-focus light
contribution (middle image), shown at twice actual brightness,
was added to create the image shown on the right. As a result, the
MOC value increases by 20% (0.691 vs 0.842) compared to the
original image, thereby giving a false impression of higher co-
occurrence. For this reason, strategies, such as unsharp masking
(Polesel et al., 2000) can help to avoid overestimation of the MOC
value by removing unwanted signal, such as that arising from
camera offset or out-of-focus light. Higher intensity or higher spatial
frequency sources of signal contamination, such as bright non-
specific labeling or autofluorescence, may be more difficult to
remove. Thus, while relatively unaffected by fluctuations in SNR,
the MOC depends sensitively on accurate removal of non-
biologically relevant signal sources.
A second, but frequently overlooked, aspect of the Manders’

coefficients is the need to determine whether or not the co-
occurrence observed between two images is primarily due to
random chance. Costes et al. proposed an approach to perform a
statistical significance test of any image co-occurrence or correlation
measure (Costes et al., 2004). To do this, one image is subjected to a

spatial ‘scrambling’, whereby pixel values are re-assigned to
random locations within the image. Importantly, this scrambling
should occur with ‘blocks’ of neighboring pixels to account for the
fact nearby pixels are typically correlated with each other. An
appropriate estimate of the pixel block size can be determined by
performing an image autocorrelation to assess texture sizewithin the
image. Once scrambled, this image can then be compared to the
other channel image (which remains unaltered) and an MOC value
is calculated. The process of scrambling and recalculating MOC
values is then repeated for many iterations. The resulting collection
of randomized MOC values is then compared to the ‘true’ MOC
value between the original images. Typically, if the true MOC
exceeds 95% of the scrambled values, it can be deemed statistically
significant and not primarily due to random chance. While robust,
this method can also be computationally intensive. An alternative
method proposed by Dunn, et al. simply rotates one channel image
90° to act as a negative control (Dunn et al., 2011), which is
compared with the original images. While considerably simpler,
this method does not provide a statistically robust means to validate
a co-occurrence or correlation measure.

Fig. 3 shows two contrasting examples for significance testing of
a MOC calculation. In Fig. 3A, a two-color image with largely
overlapping structures is shown on the left; the MOC value for this
image pair is correspondingly high with a value of 0.91. The green
signal was then randomly scrambled 1000 times using pixel blocks
that match the size of the features in the image (∼60×60 pixels), and
the MOC value was calculated for each case. An example of such a
scrambled image is shown in Fig. 3A, middle. A histogram of the
resulting MOC values calculated for 1000 scrambled green versus
the unscrambled red image is shown in Fig. 3A, right. The red arrow
indicates the true (unscrambled) MOC value. In this case, the true
MOC value exceeds all of those calculated for the randomly
scrambled images. Thus, there is very high likelihood that the co-
occurrence calculated for these images is not due to chance. An
opposite example is shown in Fig. 3B. The left panel shows a
different two-color image with a similar MOC value than that in
Fig. 3A. Nevertheless, when Color 1 (green) is scrambled 1000
times (a single example is shown in Fig. 3B, middle), the resulting
randomized MOC value histogram (right), although narrowly
distributed, tends to fall near the original value as indicated by the
red arrow. Therefore, in this example, it cannot be discounted that
the MOC value is due to random chance and any inferences drawn
from it are not statistically supportable.

Taken together, co-occurrence analyses offer advantages
and disadvantages that depend on the biological context and
should, thus, be carefully considered. Co-occurrence analysis
offers a clear intuitive means to assess a relationship between two
images by calculating the concentration-weighted overlap
between them. This approach is largely insensitive to noise and
small errors in thresholding, which is particularly useful for
inherently dim samples. However, the presence of non-
biologically relevant signal can give a false overestimate of the
overlap between two images. Thus, careful correction for
illumination heterogeneity (Leong et al., 2003), appropriate
sample preparation and acquisition parameters (North, 2006;
Waters, 2009), and proper subtraction of unwanted signal is
essential to achieve accurate results (Wu et al., 2010; Young et al.,
2004; Russ and Neal, 2016). Furthermore, it is imperative to
measure the statistical significance of any co-occurrence or
correlation value in order to assess the degree to which similar
results can be obtained by chance and – by inference – would
carry little biological meaning.

A

B

SNR=19

MOC=0.695

MOC=0.691

Signal only

SNR=12

MOC=0.690

Background 

SNR=8

MOC=0.672

MOC=0.842

Signal+background

2� brightness

Fig. 2. Manders’ overlap coefficient is insensitive to signal-to-noise ratio
but sensitive to out-of-focus signal. (A) Illustrated here is the relatively small
effect of decreasing signal-to-noise ratio (SNR) on the value of the Manders’
overlap coefficient (MOC). In this example, a decrease in SNR of 60% results
only in a 3% decrease in MOC for the images (left to right). The random
fluctuation in pixel intensity owing to noise is largely balanced out when many
pixels are summed up during calculation of the MOC value. (B) Illustration of
the effect of out-of-focus signal. Here, an original image (left) displays an MOC
value of 0.69. Upon adding a relatively low-intensity background signal with low
spatial frequency (middle image), shown for clarity at twice the actual
brightness, the resulting image (right) exhibits a >20% increase in MOC value,
even after the threshold value has been correctly adjusted.
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In general, Manders’ coefficients are useful for assessing to what
extent a structure or molecule can be found in a particular location or
organelle. For example, it has been used to quantify the co-
occurrence of a molecule of interest with mitochondria (Bravo et al.,
2011; Seibler et al., 2011), the plasma membrane (Yeung et al.,
2008; Spira et al., 2012) or the endoplasmic reticulum (Horner et al.,
2011; Arruda et al., 2014). Importantly, however, Manders’
approach does not signify that any predictable relationship exists
between the intensities in one image and the corresponding values
in the other. The MOC only expresses the degree to which two
structures spatially overlap, in an intensity-weighted manner. It
cannot positively indicate, for example, that areas of high intensity
in one image correspond to low-intensity areas in the other and vice
versa, which may be a sign of an important biological phenomenon.

Correlation: Pearson’s coefficient
While the Manders’ overlap coefficients express the extent of co-
occurrence between two images, correlation-based co-localization
analyses are based on a different interpretation of co-localization. In
this case, the guiding assumption states that, if two imaging targets
are functionally related, then their abundances will also be
predictably related to each other wherever they exist in the same
region. This assumption is particularly relevant when probing two
molecules that are thought to bind to (or repulse) each other within
the cell – even if such interactions may be rare. In other words,
correlation methods measure the relationship between the signal
intensities in one image and the corresponding values in another,
not the degree to which the signals co-occur.
Pearson’s correlation coefficient (PCC) is a common metric to

measure the predictability of this relationship (Pearson, 1896;
Manders et al., 1993). In more mathematical terms, the PCC can be
thought of as the covariance between the two images, normalized by
the product of their standard deviations:

PCC ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðyi � �yÞ2

q ; ð6Þ

where xi and �x represent the ith pixel intensity and the average
pixel intensity (ignoring sub-threshold pixels), respectively, in the
segmented color 1 image. Likewise, yi and �y are the corresponding
ith and mean values for the color 2 image. The value of n represents
the total number of segmented pixels in both images. Recall that the
value of n must be the same for both images since correlation

analysis should be performed on the intersection of the images in
question.

In more conceptual terms, the PCC determines to what extent the
signal intensity variation in one image can be explained by the
corresponding variation in the other, assuming a linear relationship.
Since the calculation of the PCC involves the difference of pixel
intensity from the population mean, it can be either positive or
negative and can range from −1 to 1. The magnitude of the PCC
gives a measure of the predictability of the relationship. Values
close to 1 or −1 indicate a near-perfect ability to infer a color 2
intensity, given the corresponding color 1 intensity and vice versa.
Values near zero indicate that there is little predictive value between
the images and that the two species being imaged do not have a clear
correlation. The sign of the PCC indicates the ‘direction’ of the
relationship between color 1 and color 2, with a positive sign
indicating that, when color 1 intensity increases, color 2 tends to
increase proportionally, pointing to a molecular attraction. A
negative sign implies the reverse, suggesting molecular repulsion.
The ability to distinguish positive and negative correlation,
therefore, represents a significant strength of the PCC coefficient
over the Manders’ methods, owing to its ability to quantify both
positive and negative associations.

Critical to the understanding of correlation-based image similarity
measurements is the use of the scatterplot. Scatterplots are constructed
by plotting the intensity value of each pixel in one image along the x-
axis and on the y-axis the intensity value of the same pixel location in
the second image, thereby forminga bivariate histogram that describes
the relationship between the corresponding intensity values. It is
important to note that a given region within a scatterplot does not
necessarily correspond to specific areas within the images, as this
representation contains only intensity information.

Most importantly, a multi-color image may exhibit relatively high
co-occurrence, while – at the same time – it can be poorly correlated,
and vice versa. For example, analysis of the multicolor image shown
in Fig. 4A results in relatively large Manders’ coefficients, withM1,
M2 andMOC values of 0.81, 0.89 and 0.89, respectively. However,
upon inspection of the corresponding scatterplot (Fig. 4B), a
predictive relationship between the intensities of corresponding
green and red pixels is not apparent, and calculation of the PCC
confirms this with a relatively low value of 0.11. Fig. 4C and D
illustrate a contrasting example. In this case, the M1, M2 and MOC
values are found to be 0.13, 0.15 and 0.14, respectively, indicating
little co-occurrence. Nevertheless, the corresponding PCC value of

A

B

Fig. 3. Image randomization to test the statistical
significance of the Manders’ overlap coefficient. (A) A
true multicolor image (left) that exhibits a Manders’ overlap
coefficient (MOC) value of 0.91. By using Costes’
randomization method, the green-color image was
scrambled 1000 times in blocks whose size was determined
by autocorrelation. A single example of a randomized image
(right). MOC was calculated for each of the scrambled green
images and the original red-color image. The histogram
shows the resulting values, in which the true (unscrambled)
MOC value (red arrow) exceeds the randomized MOC
values in all cases, indicating high statistical confidence in
the MOC. (B) A different multicolor image (left), with an
almost identical MOC value to A (MOC=0.90). Costes’
randomization method was applied to the green-channel
image as before. An example of a scrambled green image,
overlaid with the original red image is shown (right). The
resulting MOC histogram shows that the true MOC value is
not consistently greater than the randomized values,
suggesting the co-occurrence is mainly due to chance and,
thus, has poor statistical significance.
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0.97 indicates an almost perfect correlation among the image
intersection. Therefore, although the data in Fig. 4C and D do not
co-occur to a high degree, the intensity values are closely related
wherever they overlap in the two images. Thus, the Manders’ and
Pearson’s coefficients can, in certain circumstances, give different
indications of image similarity. Although seemingly contradictory,
such a result can provide powerful biological insight, as well as
emphasizes the inherent differences between co-occurrence and
correlation.
The sensitivity of a PCC value to changing SNR and the addition

of unwanted low spatial frequency signal differs considerably from
co-occurrence approaches. To demonstrate this, Fig. 5A shows how
the PCC values for three green-red image pairs are affected by
progressively decreasing signal-to-noise ratio (SNR). This decrease
in SNR is accompanied by a clear broadening of the corresponding
scatter plots shown below each image pair, with an ∼35% reduction
in PCC value. This behavior is in contrast to that of the Manders’
coefficients, where relatively large changes in SNR have little effect
on the MOC value (refer to Fig. 2A).
Likewise, correlation and co-occurrence methods also respond

differently to unwanted low-frequency signal. Whereas the MOC
requires careful subtraction of such signals for accurate
measurements (refer to Fig. 2B), the PCC is less sensitive to such
artefacts. This can be illustrated by simply adding a constant offset
to the images in Fig. 5A. Although this will shift the data points in
the scatterplot along the x- and y-axes, the predictability of their
relationship will remain the same (ignoring saturated pixels).
Therefore, a potential weakness of the PCC method lies in its

sensitivity to SNR. Decreasing SNR results in the relationship

between the pixel intensities of each image becoming less predictive
and increases the chances of an inadvertent inclusion of dim
unwanted signal during threshold calculation. Imaging the same
field of view multiple times to measure noise characteristics can
lessen the impact of low SNR on PCC value, but requires some a
priori assumptions about the underlying relationship between the
images (Adler et al., 2008). To identify an optimal threshold value
for correlation analysis, Costes et al. also proposed a means to
segment images on the basis of computing the PCC value across a
range of threshold values (Costes et al., 2004). In this approach,
continually decreasing thresholds for the two images are proposed,
and the PCC value is calculated for pixels both above and below
those threshold values. When the PCC value for the sub-threshold
pixels nears zero, an assumption is made that a suitable
segmentation of signal from background has been made.
However, care must be taken when using Costes’ threshold
regression. If the signal of interest is not well correlated compared
to the background, there will not be a clear demarcation in the PCC
values between the two. It is also important to note that Costes’
significance testing scheme is equally applicable to correlation
analysis, as illustrated in the co-occurrence analysis in Fig. 3 (Costes
et al., 2004). It should, therefore, always be performed to assess the
reliability of an MOC or PCC result.

Correlation: Spearman’s coefficient
There are cases where PCC can give unexpected results. This
includes situations where the two images are well – but not linearly
– correlated. In other words, the relationship between two images
may be very predictable but the scatterplot describing an image
intensity relationship is not well described by a straight line. In these
types of case, the PCC can underestimate the correlation between
images because the PCC can only approach its maximal magnitude
(1 or −1) when the pixel intensity relationship is linear. However,
Spearman’s rank correlation coefficient (SRCC) can address this
issue. In short, the SRCC is equivalent to the PCC, but is applied to
pixel intensity ranks rather than to the intensities themselves
(Spearman, 1904). The conversion from pixel value to pixel rank
proceeds such that the lowest above-threshold pixel intensity in the
image is given a value of 1, the next lowest value is assigned a rank
of 2, and so on. In cases where multiple pixels have the same
intensity, that value is given an average rank. For example, if two
pixels are tied for 3rd and 4th lowest value (rank 3–4), they are given
an ‘average’ rank of 3.5. The practical effect of this transformation is
that it linearizes the scatterplot from the two images, making the
Pearson’s analysis applicable to non-linear correlation.

Fig. 5B,C illustrates how the SRCC can be used to properly
measure multicolor image correlation. In Fig. 5B, two almost
identical images are displayed (first two panels). The corresponding
intensity scatterplot is displayed in the third and the ranked intensity
scatterplot in the last panel. Note that both the intensity and ranked
intensity scatterplots show a clear linear relationship, and the PCC
and SRCC are both near unity. However, Fig. 5C illustrates the
advantage of SRCC over PCC. Here, although the color 1 image is
identical to that in Fig. 5B, the color 2 image has been altered so it
produces the intensity scatterplot shown in the third panel. This plot
indicates a well-correlated but non-linear relationship between color
1 and color 2. Despite the good predictability of the scatterplot, the
PCC value is lower than expected (0.875) due to its non-linearity.
However, by ranking the pixel intensity values, the relationship
becomes linearized and the resulting SRCC value (0.989; last panel)
does more accurately reflect the predictive relationship of the
images. Importantly, the SRCC is also useful for reducing the effect

A

C D

B

Fig. 4. Co-occurrence and correlation can occur independently of each
other. (A,B) The image shows an example of high co-occurrence (MOC=0.89)
but with low correlation (PCC=0.11) (A). The low correlation can be clearly
seen in the corresponding intensity scatterplot (B), as there is no clear
statistical dependence between the corresponding pixels of each color image.
(C) By contrast, the image shown here displays a relatively low co-occurrence
between the red and green channels (MOC=0.14). (D) Nevertheless, when
only the intersection of both color images is considered, the corresponding
pixel intensities have a clear linear relationship, with a PCC value over the
intersection of the red and green images almost equaling one. This serves to
illustrate that correlation and co-occurrence are independent phenomena, as
they measure distinct behavior in an image pair. While co-occurrence gauges
the overlap between signals in two images, correlation measures the
relationship between those signals in overlapping areas.
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of pixel saturation as, in this case, the ranked value will generally
deviate less from the corresponding mean than the absolute intensity
value.
Unlike the Manders’ approach, correlation-based analyses do not

measure the extent to which one image overlaps with another.
Indeed, high values of PCC or SRCC can occur even when the
fractional co-occurrence is low (see Fig. 4). This can be especially
apparent when two imaging targets are anti-correlated or when they
only rarely interact. Correlation analysis simply measures how well
the intensities in one image predict those in the other image, when
signal is present in the same pixel. This can be a powerful method to
suggest a functional relationship, such as – among many others –
those shown for the assembly of endocytosis regulators (Teis et al.,

2008), association of focal adhesion components (Roca-Cusachs
et al., 2013; Carisey et al., 2013) or viral replication machinery
assembly (Hsu et al., 2010).

Taken together, Figs 4 and 5 illustrate the requirements and
limitations of PCC or SRCC as a measure of co-localization.
Further, these illustrations indicate the fundamental differences
between co-occurrence and correlation, with an eye towards
inferring the type of biological analysis that may be better suited
to one approach than another. For these correlation-based methods
to give meaningful results, the SNR in both images should be
maximized to the extent that is practical. As shown in Fig. 5, the
PCC can fail to give an expected result if the correlation between
two images is non-linear. Interestingly, however, calculating the

A

B

PCC=0.998

Color 1 Color 2 Intensity scatter plot Ranked scatter plot

C

SRCC=0.997

PCC=0.875 SRCC=0.989

Fig. 5. The Pearson’s correlation coefficient is sensitive to both signal-to-noise ratio and scatterplot non-linearity. (A) Shown here is a series of three
green and red image pairs whose signal-to-noise ratio (SNR) is progressively decreasing from 50 to 13 (scale not shown) from left via middle to right image. The
corresponding scatterplots are shown below each image pair; they illustrate progressive broadening, and a decrease in the Pearson’s correlation coefficient
(PCC) of ∼35%. (B) Two, almost identical, images shown in the green (left) and red (right) channel, and the corresponding intensity and ranked intensity
scatterplots, both of which are linear. (C) The same green image as shown in B (left) compared to a different red image (right). This image pair exhibits a non-linear
relationship in their intensity scatterplot with a lower PCC value of 0.875. However, a ranked intensity scatterplot (see main text) recovers the linear relationship,
with the resulting SRCC value almost equaling one (SRCC=0.989).
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SRCC for linearly correlated images still provides an accurate result.
For these reasons, the SRCC should always be used in favor of the
PCC. Fundamentally, however, both correlation and co-occurrence
measurements yield different interpretations of co-localization. Yet,
these interpretations can often be complementary.
To further illustrate these considerations, Fig. 6 shows two

examples of biological associations. In A (top panel), a confocal
image of an U2OS cell reveals the distribution of epidermal growth
factor receptor (EGFR) (Herbst, 2004), tagged with GFP. The
middle image shows Rab13 (Zerial and McBride, 2001) expressed
as an mCherry-tagged fusion protein in the same cell. Fig. 6B
shows confocal images of a Ptk2 cell immunostained for both
total myosin (top panel) and phosphorylated myosin (middle
panel), respectively. The last image in A and B, each displays the
corresponding pixel intensity scatterplots for each of the protein
pairs. Appropriate signal threshold values for each image were
calculated by using Otsu’s method (Otsu, 1975). Then, the
Manders’, Pearson’s and Spearman’s coefficients were calculated
as described previously, and their results are summarized in
Fig. 6C.
Qualitatively, the image pairs appear to have comparable levels of

similarity and the MOC values are, indeed, almost the same.
However, the individual Manders’ coefficients reveal important
differences. Although almost all of the EGFR signal overlaps with
that of Rab13, not all Rab13 co-occurs with EGFR. This suggests
that, although Rab13 may associate with EGFR, it may also be
associated with other molecules at different cellular locations. Total
and phosphorylated myosin, however, co-occur with each other
nearly equally. The level of correlation between these two examples
is strikingly different, as suggested by their corresponding
scatterplots. The PCC and SRCC values confirm this, with a two-
fold difference in their value. The intersecting EGFR and Rab13
concentrations predict each other relatively well, indicating a
concentration-dependent relationship between these molecules
(Ioannou and McPherson, 2016). However, the overall abundance
of myosin does not predictably determine the concentration of
phosphorylated myosin (and vice versa), suggesting the presence of
other regulatory mechanisms (Goeckeler et al., 2000). This example
illustrates the value to co-localization analysis in a holistic approach
that considers both overall and individual co-occurrence as well as
correlation, in order to gain a broader range of biological insights.

Super-resolution imaging
As discussed initially, any image similarity measure is subject to the
resolving power of the imaging system being used. Super-resolution
imaging circumvents the diffraction-limit and may offer detail that is
otherwise unavailable. Techniques that improve resolution by ∼1.5
to 2-fold, such as structured illumination microscopy (SIM)
(Gustafsson et al., 2008), or image scanning microscopy and its
derivatives (Müller and Enderlein, 2010; York et al., 2013), offer the
possibility of increased accuracy when using pixel-based image
similarity measurements – as long as the interacting structures of
interest both occur within in the same image pixels. Indeed, imaging
targets that appear co-localized under conventional imaging, may in
fact be well separated with even a modest improvement in resolution
(Schermelleh et al., 2008). However, the near-molecular level
resolution of single-molecule localization (SML) techniques, such
as photo-activation and localization microscopy (PALM) (Betzig
et al., 2006) or stochastic optical reconstruction microscopy
(STORM) (Rust et al., 2006), begin to reveal the effects of the
Pauli exclusion principle, which states that no two molecules can
occupy the same space at the same time.

A

C

B

Fig. 6. Interpreting co-occurrence and correlation analysis in two
examples of biological data. (A) Confocal images of an U2OS cell that reveal
the distribution of epidermal growth factor receptor (EGFR) (top) and Rab13
(middle), expressed as GFP- and mCherry-tagged fusion proteins,
respectively. The two-color overlay image is shown in the bottom image and the
corresponding pixel intensity scatterplot is shown underneath. (B) Confocal
images of a Ptk2 cell immunostained for total myosin (#3674, Cell Signaling)
(top) and phosphorylated myosin (#922701, BioLegend) (middle), after
application of secondary antibodies conjugated to Alexa Fluor 488 and Alexa
Fluor 594 (Thermo Fisher), respectively. The corresponding two-color overlay is
shown in the bottom image and the corresponding pixel intensity scatterplot is
shown underneath. (C) Summary of the co-occurrence and correlation
coefficients, including Manders’ overlap (MOC), individual Manders’
coefficients (M1 and M2), Pearson’s correlation coefficient (PCC) and
Spearman’s rank correlation coefficients (SRCC). As can be seen, both image
pairs show similar levels of total overlap, with almost identical MOC values.
However, the fractional overlap valuesM1 andM2 indicate important differences
between the two biological systems. Furthermore, the PCC and SRCC values
also indicate that, while EGFR and Rab13 have a clear concentration
relationship, the abundance of phosphorylatedmysosin is not dependent on the
total amount of mysosin, suggesting a secondary effector. Thus, careful
consideration of both correlation and co-occurrencemetrics can reveal different
aspects of these biological systems.
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For SML techniques, spatial statistics have been utilized to
quantitatively measure molecular associations without spatial
overlap (Coltharp et al., 2014; Lagache et al., 2015; Nicovich
et al., 2017; Rossy et al., 2014; Georgieva et al., 2016; Malkusch
et al., 2012). Malkusch et al. proposed a method termed coordinate-
based co-localization (CBC) analysis. The procedure first calculates
two functions,

Dxi;xðrÞ ¼
Nxi;xðrÞ

Nxi;xðRmaxÞ �
R2
max

r2
ð7Þ

and

Dxi;yðrÞ ¼
Nxi;yðrÞ

Nxi;yðRmaxÞ �
R2
max

r2
; ð8Þ

where Nxi;xðrÞ indicates the number of molecules of type x (or color
1) that are found within a radius r surrounding a given single
localization, xi, of the same molecule type. Rmax refers to the
maximum search radius, which should be larger than the expected
interaction distance. In the second expression, Nxi;yðrÞ is defined
analogously, but counts the number of molecules of type y (or color
2) within the same radius r and maximum distance Rmax. For each xi,
an SRCC is then calculated between Nxi;xðrÞ and Nxi;yðrÞ. In this
way, a correlation value can be assigned to each molecule within the
SML image. However, instead of a measure of intensity correlation,
it reflects howwell two types of molecule are correlated in space. By
assigning each localization a CBC value, a ‘map’ can be constructed
that shows areas of both high and low spatial correlation within the
image.
Another class of SML co-localization measures is based on

Ripley’s K-function (Ripley, 1977, 1976) and can serve as an
ensemble measure of interaction distance between two different
molecules:

KijðrÞ ¼ A

NiNj

XNi

i¼1

XNj

j¼1

Iðdij , rÞ
wij

: ð9Þ

Here, A is the total imaging area (or volume in the case of 3D data),
while Ni and Nj are the total number of localized molecules in each
imaging channel. I(dij<r) has a value of 1 if the distance between the
ith particle in channel one and the jth particle in channel two
(denoted by dij) is less than r and zero otherwise. A correction
factor, wij, is included to account for undercounting particles near
the edge of the image (Haase, 1995). If two molecules are randomly
distributed with respect to each other, then Kij(r)=πr2. Thus, we can
define an L-function, such that

LijðrÞ ¼ KijðrÞ � pr2: ð10Þ
Finding local maxima (or minima) in Lij(r) can, therefore, yield
characteristic interaction (or repulsion) distances (Kiskowski et al.,
2009). A variant of Ripley’s K-function is termed pair-correlation
function. Here, only the molecules contained within a ring with
inner radius r and outer radius r+dr are included. Pair correlation is
more sensitive to local changes in molecule density around a given
localization, which can result in a more accurate measure of
characteristic interaction distance. However, it also depends on a
high localization density within the image.
Importantly, Ripley’s K-function (or pair correlation function)

and CBC can be used in tandem to gain complementary
information. CBC assigns a correlation value to each localization
in the image, thereby creating a map that can highlight areas of high
or low association. Ripley’s K-function (and the related pair

correlation function), while only offering a global measure of
association, can provide a characteristic association distance
between two different molecules that is missing in the CBC
analysis.

Conclusions and future perspectives
Quantitative image co-localization analyses, while utilized in
numerous life science studies, represent a toolbox that is prone to
flawed usage and misinterpretation. Contributing to this problem is
the fact that co-localization can be interpreted in at least two distinct
ways – co-occurrence or correlation. Both interpretations have
inherent, and often opposing, strengths and weaknesses. On one
hand, measuring co-occurrence by using the Manders’ coefficients
can offer an intuitive accounting of the concentrated weighted
overlap between two imaging targets, with relative insensitivity to
imaging noise. Yet, MOC values can be artefactually inflated by
unwanted signal, such as out-of-focus light or endogenous
fluorescence. On the other hand, correlation-based analysis offers
a means to evaluate the intensity interdependence between images
and, thus, is better able to distinguish both molecular attraction and
repulsion from random association. However, correlation measures
such as PCC and SRCC work best when both images display a high
SNR and are more sensitive to changes in threshold values.
Importantly, Spearman’s rank correlation (Spearman, 1904) should
always be preferred over Pearson’s correlation (Pearson, 1896) to
account for possible non-linear associations between images, and to
guard against any pixel pair outliers, such as those occurring due to
image saturation. The statistical significance of any MCC, PCC or
SRCC value should be assessed by Costes’ randomization approach
(Costes et al., 2004) wherever possible.

Previous treatments of this subject have given recommendations
on the appropriate approach based on image characteristics (Dunn
et al., 2011; Bolte and Cordelier̀es, 2006) advocated for the
superiority of correlation over co-occurrence (Adler and Parmryd,
2010) or attempted to incorporate both concepts into a merged
metric of overall co-localization (Zinchuk et al., 2013). We argue
that the specific biological question at hand should guide both the
image acquisition and analysis strategy. As illustrated in Figs 4 and
6, co-occurrence and correlation can occur independently of each
other, and the extent of either phenomenon is largely determined by
the biological behavior being probed. Considering both types of
metric can also yield complementary information.

In addition, the effect of so-called ‘global bias’ has not been
historically discussed in the context of image co-localization.
Global bias refers to any external factor that can affect the
interaction between two molecules, apart from their affinity for
each other. Zaritsky and colleagues have proposed a powerful
means to separate local interactions from global relationships that
can confound co-localization measurements (Zaritsky et al., 2017).
Factors that can induce a global bias are numerous and can be
biological or non-biological, such as cell shape, cell cycle state,
spatially correlated noise or offset in the detector, out-of-focus
signal, or any combination thereof. For this reason, any imaging
modality that does not suppress out-of-focus light might lead to
inaccurate results due to its inclusion of signal from above and
below the focal plane. Confocal and TIRF microscopy are,
therefore, better imaging methodologies for such analyses, as they
confine excitation or detection to within the depth of field of the
objective lens (Conchello and Lichtman, 2005; Schneckenburger,
2005). Furthermore, the advent of super-resolution techniques can,
in principle, offer greater fidelity when inferring molecular
interactions. However, structures that might spatially overlap
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when interrogated with conventional modalities can, in fact, be
well-separated when using subject to super-resolution microscopy.
In general, as achievable resolution improves, the intersection of
two multi-channel images necessarily approaches zero and pixel-
based similarity measures are rendered obsolete, favoring spatial
statistical approaches instead (Nicovich et al., 2017; Coltharp et al.,
2014; Lagache et al., 2015). But, while the ultra-high resolution
attainable in PALM and STORM imaging can be attractive, these
methods typically preclude imaging dynamic samples. Further, the
preferred means to analyze these data is computationally intensive.
Thus, careful consideration must be paid to the underlying
biological behavior being investigated to select the optimal
imaging and analysis method. Any co-localization measurements
are most meaningful when expressed as relative changes. Evaluation
of a coefficient value relative to stringent controls (both positive and
negative) and/or over time will significantly strengthen its ability to
draw meaningful biological conclusions. In summary, the
complexity of co-localization analysis demands careful
consideration to determine the best approach to answer a given
biological question. Furthermore, as imaging technology continues
to improve, strategies for measuring biomolecular associations will
be required to evolve concomitantly.
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