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ABSTRACT
One of the challenges in modern fluorescence microscopy is to
reconcile the conventional utilization of microscopes as exploratory
instruments with their emerging and rapidly expanding role as a
quantitative tools. The contribution of microscopy to observational
biology will remain enormous owing to the improvements in
acquisition speed, imaging depth, resolution and biocompatibility of
modern imaging instruments. However, the use of fluorescence
microscopy to facilitate the quantitative measurements necessary to
challenge hypotheses is a relatively recent concept, made possible
by advanced optics, functional imaging probes and rapidly increasing
computational power. We argue here that to fully leverage the rapidly
evolving application of microscopes in hypothesis-driven biology, we
not only need to ensure that images are acquired quantitatively but
must also re-evaluate how microscopy-based experiments are
designed. In this Opinion, we present a reverse logic that guides
the design of quantitative fluorescencemicroscopy experiments. This
unique approach starts from identifying the results that would
quantitatively inform the hypothesis and map the process backward
to microscope selection. This ensures that the quantitative aspects of
testing the hypothesis remain the central focus of the entire
experimental design.

KEY WORDS: Experimental design, Hypothesis, Image analysis,
Microscope choice, Microscopy, Quantitative analysis

Introduction
Advancements in optical engineering, labeling technologies, and
computational capacity have turned fluorescence microscopy into
an indispensable tool in the life sciences. Its unique capacity to
probe biological questions across a large range of biological length
scales has made it a popular tool in cell biology, neurobiology and
developmental biology, as well as many other fields of research.
Modern microscopy can reveal valuable information on molecular
ultrastructure, dynamic biological processes and biological
functions. Yet, the appeal of seemingly limitless promises, the
myriad of technical details and the rapid development of
computational capabilities has also created confusion for many
seeking the right combination of imaging tools. As has been
previously pointed out by Jonkman and colleagues (Jonkman et al.,
2020), biologists can spend considerable time and resources
acquiring huge amounts of data without proper planning, only to
realize later that the data cannot appropriately address a particular
biological question. This usually occurs when the design of a

microscopy experiment is not guided by a suitable hypothesis, the
experimenter gets side-tracked by new observations or the
experiment starts without a design at all. The method proposed
here aims to assist the gathering of appropriate data that directly
addresses a quantitative hypothesis. The intent is to give the reader a
better understanding of the process and potential issues that arise in
quantitative experiments.

The importance of fluorescence microscopy lies in its ability to
serve both as an exploratory and a quantitative tool. In other words,
microscopy has a combined capacity that enables a biologist to both
formulate hypotheses based on observation and to perform
quantitative measurements to test those hypotheses. For example,
one might easily observe the localization of a target protein within a
mitochondrial compartment. However, it takes a shift in mindset to
design an appropriate experiment capable of quantifying this
localization change in response to an oxidative stress. Quantitative
measurements, however, can only produce results that directly
address a proposed hypothesis when the experiment is designed
appropriately. In fact, even an accurate, quantitative set of data that has
been generated with the best practices will not necessarily yield
biologically meaningful results. An image acquired with a digital
detector is inherentlya datamap– an arrayof values.While any digital
image can be quantified, these measurements are only biologically
meaningful when they are pertinent to the hypothesis. Take for
example a study that investigates the rates of filopodia extension
during cell migration. Data revealing the super-resolved, 3D actin
filaments are not sufficient for determining the rate of filopodia
extension. However, an experiment that captures the change in
location of the filopodial tip will provide the necessary data. In other
words, when testing a quantitative hypothesis, informative data are
quantitative, but not all quantitative data are informative.

Reliable and informative results require high-quality image data
and relevant analyses. Fortunately, there is no shortage of excellent
reviews in the literature that offer step-by-step guidance to perform
microscopy experiments, from image acquisition to quantitative
image analysis (Berg et al., 2019; Jonkman et al., 2014; McQuin
et al., 2018; North, 2006; Rueden et al., 2017; Swedlow, 2013; Van
Den Berge et al., 2019;Waters, 2009;Weigert et al., 2018). The task
now lies in ensuring that data acquisition and analyses can be
translated into biologically meaningful information, capable of
challenging a hypothesis. We argue that this must be achieved
through rational experimental design.

Designing a hypothesis-driven experiment is a vital step in the
overall experimental scheme, but it is often over-simplified and
represented by a single step. The conventional workflow of an
imaging experiment, as astutely observed by Lee and Kitaoka
(2018), is adapted in Fig. 1A. In this generalized diagram, the
execution of the experiment begins with sample preparation after
experimental design. The images are acquired, and the data will then
be processed and analyzed – usually followed by several iterations
of optimization – before the final results are presented. What is

Advanced Imaging Center, Howard Hughes Medical Institute, Janelia Research
Campus, Ashburn, VA 20147, USA.

*Author for correspondence (chewt@janelia.hhmi.org)

E.C.W., 0000-0002-1614-9219; M.A.R., 0000-0002-3426-1204; T.-L.C., 0000-
0002-3139-7560

1

© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs250027. doi:10.1242/jcs.250027

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://jcs.biologists.org/collection/imaging
mailto:chewt@janelia.hhmi.org
http://orcid.org/0000-0002-1614-9219
http://orcid.org/0000-0002-3426-1204
http://orcid.org/0000-0002-3139-7560
http://orcid.org/0000-0002-3139-7560


important to note is that experimental design is appropriately
singled out as the key first step (Fig. 1A). Yet, in stark contrast to the
wealth of technical guides, there is a paucity of discussion in the
literature on the logic of rational experimental design and how it can
be harnessed to successfully perform a hypothesis-driven,
quantitative experiment. This is an unfortunate omission, partly
due to the difficulty in summarizing a logical scheme that is
sufficiently general to be applicable to most biological questions. In
this Opinion article, we aim to fill this important gap and focus on
rational, hypothesis-driven experimental design. This guide is
aimed toward biologists interested in learning how to design
quantitative experiments that are geared toward testing their
hypotheses. It embodies our experience in steering imaging
projects from hypotheses to quantitative, informative results at the
Advanced Imaging Center at HHMI Janelia Research Campus
(Chew et al., 2017). We include in Box 1 a case study of how we
have successfully steered the development of such a quantitative
microscopy project.
The success of a microscopy-based quantitative experiment

hinges on the appreciation and understanding of (i) how the

underlying biological query and defined hypothesis directs the
experimental design, and (ii) how experimental design and
instrument choice are related to the way in which image data will
eventually be analyzed. For this reason, we outline a logic that
exemplifies these themes (Fig. 1B). We propose, in this Opinion
article, that the very first step of experimental design, following the
formulation of a hypothesis, is to determine the informative results
that can quantitatively test that hypothesis. In other words,
informative results are the ultimate goal of the designed
experiment. Therefore, an experiment that has been developed to
specifically generate data pertinent to the biological query will
produce informative results. As such, the production of the required
data will necessitate that a certain set of experimental parameters be
met, which would in turn prescribe the features of the instrument
needed to make such measurements. Overall, such a systematic
workflow ensures that the hypothesis remains central to the
experiment and that the experiment yields information capable of
challenging the hypothesis. This will help chart the roadmap of how
microscopy-based experiments should be designed for quantitative
analyses. We will not replicate the many superbly written reviews
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Fig. 1. Conducting and designing quantitative fluorescence microscopy experiments. (A) Typical workflow in microscopy experiment. This workflow is
forward-facing, progressing from the formulation of a hypothesis to the eventual presentation of the data as results. Adapted with permission of American
Society for Cell Biology from Lee and Kitaoka (2018); permission conveyed through Copyright Clearance Center, Inc. (B) A focused view of the experimental
planning phase. We propose that experimental design would be more efficient and effective by adopting a reverse-facing workflow. Here, the hypothesis should
determinewhat the necessary results should be. From there, the experimenter can plan backward from the required data to the point where the experiment can be
executed. The processes outlined in A and B are iterative, and the experimenter should re-evaluate whether the best decision has been made at each step.
(C) A flow diagram to determine whether the experimental output generated from the microscope will lead to informative results. Answering the questions
outlined here will identify the corresponding step in the design that needs re-evaluation. Reaching the ‘Informative results’ box would indicate that the data
acquired were most likely collected in a manner that would directly test the hypothesis. Alternatively, the bulleted lists provide insight into which step
in the design process requires re-evaluation to be improved in subsequent design iterations.
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and guides in the literature here, but rather aim to help readers better
utilize these guides, as we embark on our journey of experimental
design.

Observation-driven exploration versus data-driven analyses
The capacity of modern optical microscopy to support both visual
exploration and content-rich measurement has made it a versatile
biological research technique. Unfortunately, it is also one that is
commonly misunderstood. Biologists are keen observers,
exceptional in recognizing patterns, finding anomalies and
identifying new phenotypes. In fact, when it comes to studying
structures and processes, visualization by itself is often sufficient to
prompt biologists to formulate working models of the observed
systems, and these working models provide abstract representations

of the observation. The descriptive semantics used in these working
models have served as powerful tools in life sciences and enable
biologists to organize and communicate information about the
complexity of the living systems (Courtot et al., 2011). Indeed,
specific follow-up questions can often already be framed by
experienced biologists as soon as the initial images appear on their
monitor; and this is the inception point of many biological queries.
This is the essence of observation-driven, empirical inferences – ‘I
know it when I see it’, and this is where the power of microscopy has
historically been leveraged. Observational biology will continue to play
an important role, and it is certainly true that not all biological
hypotheses must be quantitatively tested. However, there is no denying
that with the advent of modern experimental methods, hypotheses in
general have become, and are increasingly expected to be, formulated in

Box 1. Case study – visualizing mitochondrial DNA release during apoptosis
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This case study partially summarizes one of the quantitative experiments performed by McArthur and colleagues (McArthur et al., 2018). Preliminary
observations indicated that the mitochondrial network of cells deficient in induced myeloid leukemia cell differentiation protein (MCL-1), a Bcl-2 family
member, broke down during apoptosis (A in the box figure), followed by the presence of mitochondrial DNA (mtDNA) in the cytoplasm (B in the box figure).
This observation led to the conceptualization of the working model – ‘during apoptosis, mitochondrial morphology changes prior to the release of mtDNA
into the cytoplasm’.

To properly plan a quantitative experiment to test this model, we used our reverse-logic to steer the following experimental design:
1. Amore-defined hypothesis was formulated – ‘during apoptosis, themitochondrial sphericity increases prior to an increase in the number of externalized

mtDNA’. Note how the initial descriptive semantics have been translated into quantitative semantics that will guide subsequent measurements.
2. Two sets of informative results were essential to test this hypothesis: (i) mitochondrial sphericity, and (ii) mtDNA externalization, both measured as a

function of time.
3. To achieve these informative results, the required data must include time-lapsed, volumetric images of labeled mitochondria and mtDNA.
4. To produce these data, the following experimental imaging parameters had to be met:
• high-speed volumetric imaging to accurately track 3D mitochondrial network reorganization
• high signal-to-noise ratio and resolution in order to accurately measure the 3D structures of the mitochondria
• near-isotropic resolution to precisely characterize the sphericity of mitochondria and mtDNA extrusion
• two-color acquisition to provide information on both the mitochondria and the mtDNA.
5. While both lattice lightsheet microscopy (LLSM) and 3D structured illumination microscopy (SIM) met these benchmarks, it was also important to meet

the biological requirements. Pilot studies established that two-channel volumes of 50 slices each, acquired approximately every 10 s for a total of 50 min
would be necessary to capture and follow this rare process in its entirety. Photoxicity could affect the mitochondrial biology, introducing artifacts. To mitigate
phototoxicity, the gentle illumination of LLSM established it as the clear choice. To further reduce light exposure, brighter fluorescent labels, such as
mNeonGreen (Shaner et al., 2013) and HaloTag™ (Promega, USA) with Janelia Fluor® 646 (Grimm et al., 2017) (instead of EGFP and mCherry), were
used. Note that the experimental design process was iterative and benefited from pilot studies used to identify the necessary imaging parameters, suitable
fluorophores, and the optimal microscope.

C to E in the box figure illustrate the successful completion of this quantitative experiment. The LLSM micrograph (C) shows mtDNA extrusion from
mitochondria. These images were used to create 3D segmentations (D) and were quantified. The mitochondrial sphericity and mtDNA externalization
were measured over time, and plotted in E. This graph shows that an increase in mitochondrial sphericity (thin red line) preceded the onset of mtDNA
extrusion (thin green line) – providing the informative result that ultimately supported the hypothesis.

The box figure shows morphological changes of mitochondria and mitochondrial DNA release during apoptosis; images were previously published in
McArthur et al. (2018) and are reused here with permission. Scale bars: 5 µm.
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more quantitative terms. Addressing these increasingly focused
hypotheses is where the quantitative capacity of microscopy has the
most impact and is the core of this Opinion article.
If one were to accept the idea that ‘seeing is believing’ with

microscopy as an exploratory instrument, then surely one must also
accept the notion that ‘measuring is knowing’ when using
microscopy as an analytical technique. The challenge here is to
reconcile observation and quantification using the same instrument.
Quantitative measurement is intrinsically analysis-rich and
semantics-agnostic (Shasha, 2003). However, this is where the
disparity between observation and quantification often arises. It is
common to see proposed microscopy studies with phrases such as
‘to analyze the spatial-temporal dynamics of an organelle’. There is
unfortunately no specific analytical metric for the ‘dynamics’ of an
organelle or any other biological structure. Dynamics is an
ambiguous term that is often used to encapsulate several different
metrics that together describe a particular observation. To transform
vague biological queries such as this into quantifiable goals for
microscopic analysis, we need to consider how intuitive biological
semantics can be reformulated. With this in mind, we will begin by
exploring how hypotheses shape the rationale of microscopy-based
experiments.

Testable hypothesis
The cornerstone of the classical scientific method is to determine
whether evidence supports or negates a postulated idea.
Hypotheses, at the experimental level, must therefore be negatable
by observation or measurements (Popper, 2005). A clearly stated,
verifiable hypothesis will guide every step of an experiment and will
provide invaluable checkpoints. More importantly, the negatable
hypothesis will impart the necessary restraint to mitigate being side-
tracked from the initial question. This disciplined approach does not
preclude future exploration of other observations, but it serves to
balance both the exploratory and the analytical priorities of an
experiment (Fig. 1C). This is why a hypothesis such as ‘condition X
will increase the rate of mitochondrial fission’ has stronger semantic
specificity than ‘condition X will affect the spatial-temporal
dynamics of mitochondria’. The latter hypothesis cannot be tested
because the experimental variables (i.e. fission events) that either
support or negate it are not defined.
Interestingly, such cautionary advice is rarely needed for

biochemical and molecular biology assays. These are assays that
are uniquely quantitative and do not usually serve as observational
tools, and biologists learn these techniques extensively during their
training. As a result, biologists formulate testable hypotheses and
perform quantitative analyses with ease using assays such as
immunoblots, PCRs, ELISAs or enzyme kinetic assays. What
differentiates these assays frommicroscopy is that they are explicitly
linked to well-defined sets of output. For example, an immunoblot
yields specific information on molecular mass and abundance. In
contrast, a vast plethora of information can be derived from
microscopy data, including molecular abundance, spatial location,
movement behavior, morphological changes, structural features,
molecular association, enzymatic activity, and the list goes on.
Microscopy is therefore not a single assay; instead, it is a collection
of assays that vary depending on how the experiment is designed.
Without a defined boundary, the scope of an experiment can quickly
become too ambitious and unnecessarily complex. This underscores
the importance of identifying the appropriate experimental output
that addresses the hypothesis early in the design process.
Compared to biochemical and molecular biology assays, the

complexity of microscopy is further compounded by the variability

in the nature of the sample. In comparison to molecular biology
assays that use defined samples for input, such as nucleic acids or
proteins, microscopy can accommodate a wide variety of complex
samples (from purified molecules to a multitude of model organisms
at various stages of development, for example) that in turn change the
requirements and implementation of the experiment. Thus, it does not
come as a surprise that the experimental scheme and sample choice
often have to be considered in parallel due to their interdependencies
(Galas et al., 2018). Sample compatibility is a complex issue that
comprises both the specimen and fluorescent labels. Likewise, the
labeling strategy and sample viability are critically important factors
to the success of an experiment, and these topics have been
extensively discussed in the literature (Albrecht and Oliver, 2018;
Dean and Palmer, 2014; Frigault et al., 2009; Heppert et al., 2016;
Icha et al., 2017; Kiepas et al., 2020; Lambert, 2019; Schneider and
Hackenberger, 2017; Specht et al., 2017; Thorn, 2017). Overall, the
compatibility of a sample will be determined by all aspects of the
experiment and demands careful consideration. As a result, the
hypothesis and the associated experiment will be heavily influenced
by what can be realistically achieved given the nature of the sample.
Once the hypothesis has been appropriately defined, rather than
proceeding directly to performing microscopy experiments, the most
critical step at this point is to evaluate what it means to challenge the
hypothesis.

Embarking on the journey of experimental design
Informative results
Not all results can adequately test a hypothesis. It is important to
differentiate between a ‘desired outcome’ and an ‘informative
result’. The desired outcome would naturally be for the evidence to
support the hypothesis. Continuing with the example of
mitochondrial fission stated above, the informative result in this
case would be the number of mitochondrial fission events as a
function of time, both in the presence and absence of condition
X. This is in contrast to the ‘desired outcome’ of finding an
increased rate of mitochondrial fission given condition X. In
addition, to be informative, the required data should encompass
appropriate controls and sufficient replicates to support statistical
analyses. The informative result is not designed to affirm one’s
intuition; it is required to support or negate the hypothesis.

Required data
As depicted in Fig. 1B, experimental design involves a reverse-
thinking workflow that begins with informative results and
concludes with microscope choice. This reverse-flow provides
the necessary logic for designing a quantitative experiment. The
essence of efficient experimental design is to home in on
the appropriate assay from the multitude of possibilities offered
by fluorescence microscopy. It is therefore imperative that the
experimenter identifies what the necessary data are, as this will
ultimately define the appropriate assay. This underscores the
importance of thinking in reverse, as the necessary data can only
be defined by informative results. While results and data are
sometimes used interchangeably elsewhere, they are distinctly
different in this context. Results refer to the final analytical metrics
compiled from a set of related experiments. In contrast, a set of data
generated from the microscope, by itself, is insufficient to speak to
the validity of a hypothesis.

The transition from data to results requires certain translational
steps. A good example of such translation is the process of
connecting coordinates of a moving object, be it a cell or particle,
between time points into a defined track. Without further analyses,
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the tracked data of a moving object is only minimally informative; it
merely indicates that the object has moved. If one were to
hypothesize that the object would change its migratory behavior
under certain conditions, then one would need to consider which
measurements could describe that behavior. These informative
measurements, when performed on the data, are referred to as the
analytical metrics. In this example of characterizing migration
patterns, the analytical metrics may include directionality, velocity
and motion persistence (Aaron et al., 2019). Informative results are
produced when these analytical metrics are applied to the
appropriate data.
Adhering to our reverse-design approach, the types of analytical

metrics that will lead to the informative results are the next factor an
experimenter must consider. Table 1 shows how common biological
objectives dictate the relevant analytical metrics, which in turn
prescribe the necessary experimental tools. Analytical metrics is a
form of semantics. What sets it apart from the semantics used in
working models is that, in analytical metrics, the semantics are
quantitative and specific rather than descriptive. What should be
clear from Table 1 is that careful consideration is required to choose
the appropriate analytical metrics. In fact, as reflected in the
mitochondrial fission example, analytical metrics (mitochondrial
fission rate) should be central to the hypothesis, so that it can be
tested. An additional example where the choice of the correct
analytical metric would affect the results is in colocalization studies.
One must first determine whether measuring the degree of overlap
(co-occurrence) of the two signals is more appropriate than
measuring the extent of their correlation. This decision will
dictate the analytical metric that should be used (Aaron et al.,
2018). Likewise, if a certain treatment is postulated to increase the
dissemination of cancer cells from a cell cluster, it is important, from
a mechanistic standpoint, to properly frame the testable hypothesis.
This can be accomplished by avoiding vague descriptions such as
‘dissemination’ and instead frame the descriptor in quantitative
terms, such as velocity, directionality and persistence of the cellular
movement (Aaron et al., 2019). This is how descriptive semantics
should be translated into quantitative semantics, thereby enabling
the underlying biology to be measured.
Interestingly, and perhaps ironically, many of the analytical

metrics listed in Table 1, such as velocity, directionality, or
curvature, collectively describe ‘spatial-temporal dynamics’. Yet,
owing to various limitations of individual microscope design, it is
impossible to capture them all in one experiment (see the section on
microscope selection below). Similarly, it is often counter-

productive to acquire more data than one needs, as this
complicates data analysis and also compounds the problem of
data storage (Andreev and Koo, 2020). Added complexity can lead
to the experimenter being side-tracked from the original goal and
makes data interpretation more difficult. Fig. 1C shows how the
iterative evaluation of the experimental output will ensure that these
readouts stay pertinent to the hypothesis and allow room for
observational biology to take place. Parsimonious selection of
analytical metrics will focus the scope of the experiment, generating
data that can test the hypothesis. However, the well-considered
selection of analytical metrics only fulfills half of the data
requirement. One also needs to consider the validity of the data.
In other words, how to ensure that the data set is accurate and
reproducible.

Accuracy and reproducibility together describe the rigor of the
experiment. While highly related, it is possible that accurate data are
not reproducible, and reproducibility does not ensure accuracy
(Payne-Tobin Jost and Waters, 2019). Too often, the accuracy and
reproducibility of microscopy data is only an afterthought, which
can potentially jeopardize an entire experiment. There are two
places in which rigor can be compromised: during data generation
and in the experimental design. Great care should be taken to ensure
unbiased sampling, appropriate use of standards and controls,
uniform instrument performance and consistent data processing
pipelines. In this light, preserving accuracy and reproducibility
during image acquisition has been extensively covered (Jonkman,
2020; McQuin et al., 2018; Payne-Tobin Jost and Waters, 2019),
and is beyond the scope of our discussion. Nevertheless, this is
extremely important advice and should be followed closely.

However, identifying the appropriate constraints for a rigorous
experimental design can be equally challenging. How experimental
controls and baselines are chosen can alter the data and the results,
and therefore cannot be taken lightly as it can skew data
interpretation. In stark contrast to physics, in which absolute
numbers of various universal constants can be mathematically
derived, biology is a comparative science. In biology, it is the
change of experimental readouts in response to a modification of the
experimental variables that is the important factor. As previously
mentioned, modern microscopes will always generate quantifiable
data because a digital image is intrinsically a data map. However,
not all quantifiable digital images are meaningful. An absolute
number derived from a colocalization experiment (for example, a
calculated Pearson’s correlation coefficient of 0.75) between two
proteins is quantitative, but utterly meaningless as a stand-alone piece

Table 1. Selecting analytical metrics based on biological questions

Objectives General examples (descriptive semantics)
Analytical metrics (quantitative
semantics) Common tools

Characterizing biological motion Organelle movement, cell locomotion Velocity, directionality, persistence Object tracking
Saltatory movement or processivity of motor-
driven movement

Velocity, directionality, persistence,
diffusion constant

Particle tracking

Molecular turnover in a compartment Dissociation constant, diffusion constant FRAP, photoconversion
Interpreting biological interaction/
signaling

Target protein in an organelle Co-occurrence coefficient, correlation
coefficient

Colocalization analyses

In situ levels of protein modifications (e.g.
phosphorylation)

Image ratio Ratiometric imaging

Microenvironment of target molecules Anisotropy Anisotropy
measurement

Measuring shape/size of biological
structures

Aspect ratio during cell spreading or cell
differentiation

Shape descriptors Morphometry

Filopodial dynamics, membrane ruffles in 3D Turnover, angular deflection, surface
curvature

Deformation
measurements

FRAP, fluorescence recovery after photobleaching.
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of data. It has to be compared to controls to become biologically
informative – has the Pearson’s coefficient changed in response to a
variation in the experimental condition? The importance of
establishing an experimental baseline for comparison cannot be
overstated. Owing to our inherent tendency to look for the desired
outcome, experimental bias occurs in the absence of a rigorous
baseline. Validation of an experimental pipeline will ensure the
measurements accurately represent the biological truth. This can be
achieved by the effective use of controls and standards (Payne-Tobin
Jost and Waters, 2019). While this sounds cliché, we found that
comparative baselines are often forgotten. By articulating the
necessary controls for a given hypothesis, the underlying nature of
the experiment can becomemore apparent. This in turn can be used to
refine the hypothesis and home in on what the biologist seeks to test.
Stringent controls will indeed make for better experiments.

Parameters
When an experiment is driven by a hypothesis, the hypothesis itself
will define the requirements of the experiment. These, in turn, will
define the parameters that subsequently circumscribe the rest of the
microscopy assay. The key parameters in any microscopy
experiment will include one or more of the following: (i) lateral
and axial spatial resolution, (ii) temporal resolution, (iii) tolerance to
phototoxicity and photobleaching, (iv) field of view, (v) imaging
depth, (vi) multiplexing capacity to acquire a combination of
colors, and (vii) spectroscopic imaging capabilities. In a perfect
world, a microscope will encompass all these parameters.
Unfortunately, in reality, such a microscope does not exist as
every microscope requires trade-offs (Combs, 2010; Lemon and
McDole, 2020; Scherf and Huisken, 2015; Schermelleh et al.,
2010). Occasionally, the trade-off can come at an exorbitant price,
and this is especially the case with super-resolution microscopy.
To gain the extra resolution, these modalities either completely
sacrifice the capacity to image live phenomena or incur
unacceptable doses of illumination light that rapidly induces
phototoxicity (Schermelleh et al., 2019). Thus, the trade-off of an
otherwise suitable microscope may render it incapable of
producing the required data.
In order to avoid such situations, it is best to understand what

needs to be captured by the microscope before selecting an

instrument. This can be achieved by changing the ambiguous,
descriptive semantics (e.g. ‘membrane 3D dynamics’) to those that
are framed in the semantics of analytical metrics (e.g. ‘filopodial
angular deflection’, ‘membrane surface curvature’) (see Table 1).
By identifying the necessary metrics, the required imaging
parameters can be prioritized. For example, the analytical metrics
required to sufficiently measure the 3D membrane ruffles of a cell
(Fritz-Laylin et al., 2017) include angular deflection, surface
curvature, volumetric changes and the turnover rate of these
membranous structures. These metrics will mandate the following
imaging parameters: (i) high volumetric imaging speed (multiple
volumes per min); (ii) improved axial resolution producing near or
true isotropic resolution in all three axes, so that the ruffling
structures can be resolved and segmented accurately; (iii) gentle
illumination to minimize phototoxicity; (iv) live-cell-compatible
imaging; and (iv) labeling of the cell membrane that is capable of
facilitating the high number of image acquisitions. Box 1 also
provides a case study of how analytical metrics influence
microscope choice. Specific analytical metrics do not preclude the
experimenter from observing (and even exploring) the biology;
instead, they help winnow the imaging parameters down to the bare
essentials. Together, quantitative metrics and experimental
parameters will guide the user to the optimal microscope(s).

Microscope selection
The task of microscope selection can be bewildering to novices, and
at times is confusing to even experienced microscopists. Biologists
often face multiple hurdles in identifying suitable microscopes for
an experiment through no fault of their own. These include (i) the
lack of access to the desired instrument, (ii) ill-informed demand
from reviewers to use the latest technology in the name of
innovation, (iii) over-promise of instrument capabilities from the
manufacturers, (iv) under-reporting of the instrument limitations,
and (v) insufficient or erroneous reporting of published results that
render experimental conditions irreproducible. Table 2 summarizes
the features of various commonly used microscope modalities, as
well as their relative advantages and shortcomings in our experience.
Biologists have access to a wide range of modalities beyond
standard widefield epifluorescence microscopes: total internal
reflection fluorescence microscopy (Mattheyses et al., 2010),

Table 2. Performance comparison of various microscope modalities

Imaging parameters or requirements

Lateral resolution Imaging speed Sample exposure Live volumetric Axial resolution Imaging depth

Widefield epifluorescence Good Very good (2D) Very good Moderate Moderate Moderate

TIRF Good Very good (2D) Excellent N/A N/A N/A

Gaussian beam lightsheet Good Excellent (3D) Excellent Excellent Moderate Very good

Bessel beam lattice lightsheet Good Excellent (3D) Excellent Excellent Good Good

Spinning disk confocal Good Excellent (3D) Good Excellent Moderate Very good

Laser scanning confocal Good Good Good Good Good Very good

Two-photon fluorescence Good Good Good Good Moderate Excellent

Image scanning Very good Good Very good Very good Good Very good

SIM Very good Moderate Moderate Good Very good Moderate

STED Excellent Good Poor Good Excellent Very good

RESOLFT Excellent Moderate Poor Good Excellent Very good

SMLM Excellent Poor Poor Poor Moderate Moderate

Each block represents the relative qualitative capacity, in our experience, of each modality. The various imaging parameters or requirements cover a wide variety
of uses and applications. Although other modalities exist, here we only highlight common, commercially available techniques. TIRF, total internal reflection
fluorescence; SIM, structured illumination microscopy; STED, stimulated emission depletion; RESOLFT, reverse-saturable optical fluorescence transitions;
SMLM, single-molecule localization microscopy; N/A, not applicable.
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lightsheet microscopy (Chatterjee et al., 2018; Chen et al., 2014;
Power and Huisken, 2017), confocal microscopy (Claxton et al.,
2011; Conchello and Lichtman, 2005; Jonkman et al., 2020;
Oreopoulos et al., 2014), two-photon excitation fluorescence
microscopy (Benninger and Piston, 2013; So et al., 2000) and
image scanning microscopy (Gregor and Enderlein, 2019), as well
as super-resolution techniques (Demmerle et al., 2017; Sahl et al.,
2017; Schermelleh et al., 2019; Sydor et al., 2015; Vicidomini et al.,
2018). What should be immediately obvious from their comparison
is that there is no ‘winner’ or ‘loser’ (Table 2). Nomicroscope scores
equally well or poorly across the various parameters, reinforcing the
notion that every microscope compromises a combination of
parameters in order to excel at others. As a result, the process of
microscope selection is rarely linear. Many instruments have
overlapping capabilities that obscure the selection process and
will require that more than one instrument be considered at a time.
By defining the required parameters beforehand, they can be used to
filter the selection down to the most appropriate instrument(s), as
exemplified in the case study presented in Box 1. The process of
microscope selection is aided by a good understanding of the
necessary imaging parameters. Ultimately, the justification for an
instrument lies solely on the ability of that microscope to provide the
necessary analytical metrics and the data informative of the biology.
It is impractical to expect biologists to understand the myriad of

technical nuances of these rapidly evolving technologies. Likewise,
most advanced imaging systems are usually concentrated in shared
microscopy facilities, managed by experienced microscopists. This
makes it all the more important for biologists to communicate,
precisely and concisely, the desired analytical metrics and the
corresponding parameters required for a successful experiment. It is
sometimes difficult to appreciate that the latest imaging technology
is not always the most appropriate. A super-resolution microscope
or advanced lightsheet microscope may not necessarily be more
suitable than awidefield epifluorescence microscope for a particular
experiment. Amicroscope can only enhance certain parameters, and
it is only beneficial if the enhanced parameters are utilized wisely.
Even though structured illumination microscopy (SIM) offers
improved resolution (see Table 2), it does not enhance the data of
cell tracking studies over what can be achieved with a standard
epifluorescence widefield microscope. It is also important to note
that sometimes no single existing imaging technology may be able
to produce the required data, necessitating the use of multiple
instruments, or even the modification of the testable hypothesis.
However, the availability of a new technology can open up the
possibility of previously unfeasible analytical metrics that make it
possible to address different biological queries.

Perspectives
The microcopy literature has no shortage of excellent reviews on the
technical aspects of various imaging modalities, as well as tutorials
on how to generate quantitative and reproducible data. However,
topical discussion of best practices and optics does not necessarily
engender a coherent framework of how these sets of information can
be integrated to facilitate a hypothesis-driven, quantitative
experimental design. Here, we present not only a roadmap of how
to use these guides in the literature, but we break with the convention
and argue that microscopy-based quantitative experiments should be
designed in reverse, starting with determining the informative results
needed to challenge a hypothesis.
Despite the promises of the latest technologies, no microscope is

perfect. Usually, a feature gained in a technique comes at the cost of
other key parameters. The essence of experimental design is never

about the inclusion of every parameter the experimenter wants; rather
it is about the careful exclusion of unnecessary parameters. This will
allow accurate measurements to be performed and will ensure that the
parameters relevant to the information the experimenter needs are
maintained. This is the core concept of our approach. The essential
parameters must be determined by what is required to test a
hypothesis. These parameters will, in turn, naturally shape the rest of
the elements of an experimental pipeline (Fig. 1A). A hypothesis-
driven experimental design must be just that – driven by the
hypothesis. It should be based on the biological question at hand, and
not by the lure of the latest technologies. Fortunately, this process is
an iterative feedback loop. The key questions left unanswered due to
lack of technology inspire the development of novel microscopes.
New technologies then reciprocally inform biology so that new
hypotheses can be formulated. This cyclical process, however, does
not negate the fact that experiments should be framed within the
confines of existing technologies.

This Opinion article does not, by any means, diminish the
exploratory power of microscopes and the well-honed acumen of
biologists to observe and deduce. On the contrary, most hypotheses
are synthesized following keen observation. The scope of this
discussion is to focus on the process of quantitatively verifying a
hypothesis. We have not addressed here how the power of modern
microscopy has been harnessed in big-data scientific exploration.
Such experiments are usually hypothesis-free; instead machine-
learning algorithms are employed to search for patterns beyond what
human perception can efficiently discern (Chessel and Carazo
Salas, 2019; Piccinini et al., 2017).

Quantitative microscopy experiments are not easy to design, as
they require knowledge at the confluence of optics, imaging probes,
data analysis and how the biological samples interact with the
microscope. It is therefore of paramount importance for biologists to
seek and heed the advice of expert microscopists and data scientists,
especially those in core facilities, who are experienced in the
application of microscopy. The conventional practice of generating
a lot of data first, followed by data analysis as a secondary
consideration should be avoided. Microscopy-related experiments
demand careful planning and continued, iterative evaluation before
the optimal approaches can be implemented. The fact that this
message is echoed in every review and guide cited here is because it
is important, and unfortunately, because it is also commonly
overlooked. The perils of ignoring it cannot be overstated.
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