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ABSTRACT
The visual allure of microscopy makes it an intuitively powerful
research tool. Intuition, however, can easily obscure or distort the
reality of the information contained in an image. Common cognitive
biases, combined with institutional pressures that reward positive
research results, can quickly skew a microscopy project towards
upholding, rather than rigorously challenging, a hypothesis. The
impact of these biases on a variety of research topics is well known.
What might be less appreciated are the many forms in which bias
can permeate a microscopy experiment. Even well-intentioned
researchers are susceptible to bias, which must therefore be
actively recognized to be mitigated. Importantly, although image
quantification has increasingly become an expectation, ostensibly to
confront subtle biases, it is not a guarantee against bias and cannot
alone shield an experiment from cognitive distortions. Here, we
provide illustrative examples of the insidiously pervasive nature of
bias in microscopy experiments – from initial experimental design to
image acquisition, analysis and data interpretation. We then provide
suggestions that can serve as guard rails against bias.

KEY WORDS: Microscopy, Bias, Bioimage analysis, Quantitative
microscopy

Introduction
Humans are visual creatures (Kaas and Balaram, 2014).
Microscopy, with its unique ability to combine our instinctive
reliance on visual cues and our curiosity-driven discovery, is an
exceptionally powerful research tool. It has gained such universal
acceptance in the life sciences that ‘seeing is believing’ has
become a banal mantra to promote microscopy. However, the true
power of modern microscopy is its parallel ability to verify
observational discoveries across large biological and temporal
scales with quantitative analysis (Reiche et al., 2022; Wait et al.,
2020). This has been made possible by rapid advancements in
optical hardware, digital detectors, sample preparation techniques
and computational power (Balasubramanian et al., 2023; Hickey
et al., 2022; Huang et al., 2021). Consequently, the research power
provided by these capabilities comes with an accompanying
increase in responsibility to perform reliable and reproducible
science (Munafò et al., 2017).
This imperative has led to an abundance of guides in the literature

for every stage of a microscopy project from experimental
conceptualization (Jost and Waters, 2019; Wait et al., 2020) to
image acquisition (Jonkman et al., 2020; North, 2006) and

quantification (Khater et al., 2020; Waters and Swedlow, 2008).
Journals, reviewers and funding agencies can encourage the use of
these best practices, but ultimately, implementation of these
procedures falls on the observer. Although the foundation of
science relies on the falsification of hypotheses (Platt, 1964), the
modern scientific research enterprise – from publications to grant
funding and subsequently promotion – tends to reward positive
outcomes that support hypotheses. This tempts even well-
intentioned observers to turn the intuitive appeal of microscopy
on its head: believing becomes the impetus for seeing what was
expected, providing multiple vulnerabilities for observer bias to take
control of an experiment.

Observers are naturally susceptible to a wide variety of
cognitive biases, which manifest in many forms during a
microscopy project (see Table 1 for several examples). Our
tendency to prefer information that supports existing beliefs and
is most available to us affects our daily decisions (Kahneman,
2011); these same mental heuristics can also shape quantitative
microscopy. At each stage where there is the opportunity for
experimental choice, the impulse to support the hypothesis can
lead an observer astray. Selection of a region of interest or image
acquisition parameter can be misinformed by the subjective
assessment of the observer. Likewise, identification of features in
an image can be skewed by flaws in visual perception. To
circumvent these problems, journals and funding organizations
have begun to insist on quantitative image analysis. Unfortunately,
it is a common misconception that quantitative analysis is a
fail-safe measure against bias. Even more perilous is the belief
that once imaging data have been quantitatively analyzed, the
data interpretation is incontrovertible. In fact, quantitative
analysis does not guarantee an accurate representation of reality.
Furthermore, quantitative results might not even always be
informative (Wait et al., 2020).

Acknowledging observer bias is essential for diminishing its
impact. It requires intellectual humility (Hoekstra and Vazire, 2021)
to rigorously test a hypothesis through falsification and the
assessment of alternative hypotheses (Platt, 1964). Good
intentions cannot cover for flawed reasoning (Bishop, 2020) and
bias must be actively and consciously minimized. In this Opinion,
we will illustrate how several common biases jeopardize the fidelity
of microscopy-based experiments and how they derail accurate data
analysis and interpretation. We explore how these errors can be
recognized and addressed. Although the detailed manifestations of
the many biases in microscopy are too numerous for the scope of
any one article, the concepts illustrated here are chosen to cover a
broad range of common yet often under-appreciated bias types.
Most importantly, the proposed solutions are broadly applicable to a
range of experimental designs and analysis approaches (see Box 1).
The underlying principle of this paper is that, above all else,
disciplined critical thinking is indispensable to rooting out subtle
but grave experimental biases.
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Imaging choices lead to overlooked information
Any imaging approach is fundamentally limited to revealing only a
subset of features in a biological system. For example, the
constraints of live-cell imaging limit the number of labels that are
feasible (Reiche et al., 2022), and even highly multiplexed fixed-
sample imaging techniques, for example, expansion-assisted iterative
fluorescence in situ hybridization (EASI-FISH; Wang et al., 2021),
cannot capture every facet of a sample. The abundance of cellular
structures is more clearly revealed by electron microscopy (Xu et al.,
2020), yet electron microscopy lacks molecular specificity and can
still leave many sample features obscured (Peddie et al., 2022). Such
overlooked features do not negate the usefulness of imaging
experiments but must be recognized during data interpretation to
avoid ill-supported conclusions.

Hidden biological components and confounding variables are
inevitable in any experimental design, but poor image acquisition
choices can further conceal important biological information. For
example, adjusting detector offset during a confocal acquisition
changes the intensity level at which pixels are set to a value of zero
(i.e. black). Adjusting the offset thus may lead to visually ‘cleaner’
images, but can also obscure real features, such as excluding
the diffuse pool of G-actin from images of cells expressing
green fluorescent protein (GFP)-labeled actin (Fig. 1A,B).
Rejecting this population might naïvely seem like a tidy way to
simplify downstream analysis, but this imaging choice complicates
the interpretation of the observed biology. Even if F-actin is the
focus of study, adjusting the acquisition offset improperly can
unintentionally end up excluding dimmer filamentous structures,

Table 1. Examples of cognitive biases, which can impact all stages of a microscopy experiment

Type of bias Example manifestations

Clustering illusion Seeing groups in time or space as significant when they are random (Gilovich et al., 1985).
Analysis: Assuming groups of receptors reflect the formation of dimers, rather than random arrangement in the membrane

Color perception Illusions due to misleading perception of colors (Kovesi, 2015 preprint; Taylor et al., 2017; Wong, 2010).
Analysis: Drawing misleading conclusions about an intensity gradient due to the use of non-perceptual
colormaps, which have artificially sharp visual changes in color and uneven contrast

Confirmation bias Favoring information that supports existing beliefs (Mynatt et al., 1977; Nuzzo, 2015).
Note that confirmation bias reinforces the other listed biases.
Conceptualization: Developing experiments that will support rather than test the hypothesis
Acquisition: Collecting additional replicates of ‘good’, but troubleshooting ‘bad’ samples
Analysis: Choosing metrics that support rather than test the hypothesis

Congruence bias Not testing alternative hypotheses for the observed data (Luckhoff, 2021; Wason, 1960).
Conceptualization: Neglecting to design assays that will test alternative hypotheses
Acquisition: Forgoing labeling controls if the data appear to support the hypothesis

Contrast effect Over- or under-estimating a feature based on spatial-temporal surroundings (White, 1979).
Analysis: Perceiving cells with less background as having more protrusive structures than similar
cells with a high background

Frequency illusion Believing something just learned is more prevalent than it is (Bos et al., 2020; see also Pacific Standard article at https://psmag.com/
social-justice/theres-a-name-for-that-the-baader-meinhof-phenomenon-59670).

Conceptualization: Developing a hypothesis based on a newly observed feature while ignoring the
prevalence of the feature in the population

Illusory correlation Seeing a relationship where there is no underlying correlation (Chapman, 1967).
Acquisition: Seeing colocalization in the bleed-through across channels
Analysis: Measuring colocalization on maximum intensity projections despite wide differences in z-axis localization

Pareidolia Seeing patterns that do not exist (Foye et al., 2021; Voss et al., 2012).
Analysis: Assuming non-specifically labeled fluorescent objects are lysosomes because lysosomes fit into the hypothesis

Publication bias Withholding negative results from publication (Joober et al., 2012).
Conceptualization: Focusing a scientific narrative on the results that support the hypothesis

Recency bias Giving greater weight to more recent observations (Arnold et al., 2000).
Conceptualization: Developing a hypothesis based on the latest journal issue rather than the
full body of literature across decades

Analysis: Focusing on the most recently imaged sample rather than all replicates

Selection bias Focusing on a sample that is not representative of the population (Ellenberg, 1994; Jost and Waters, 2019).
Acquisition: Choosing an imaging region to support the hypothesis rather than illustrate the population
Analysis: Choosing a cell to be included in a figure because it supports the hypothesis

Survivorship bias Overlooking data that does not survive a selection process (see 2016 article by B. Casselman at https://www.ams.org/publicoutreach/
feature-column/fc-2016-06 and 2021 article by Hemprich-Bennett et al. at doi:10.1038/d41586-021-02634-z).

Conceptualization: Overlooking negative results during hypothesis development
Acquisition: Overlooking the phenotypes of cells that die due to sample preparation or imaging
Analysis: Overlooking non-labeled cellular components that could influence results
Analysis: Overlooking cells that do not meet certain morphological criteria

Weber–Fechner
laws

Perception of a change is relative to the size of the changing feature (Dehaene, 2003).
Analysis: Perceiving a larger change in morphology in small cells that extend a protrusion than in
large cell with a similar-sized protrusion

Conceptualization refers to activities such as hypothesis formulation or publication, while Acquisition encompasses sample preparation and imaging time.
Analysis is broadly defined to cover pre-processing and visualization as well as image analysis and data interpretation. Bias must be addressed at all stages.
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especially if actin morphology changes (Fig. 1C). Concerningly,
this imaging choice can even lead to different conclusions from a
purportedly unbiased analysis of intensity over time. Excluding the
contribution of diffuse G-actin might lead to the erroneous
conclusion that overall actin levels are decreasing when, more
accurately, it is cycling through different polymerization states
(Fig. 1D). Attention to imaging best practices (Jost and Waters,
2019; Lee et al., 2018; North, 2006; Waters and Swedlow, 2008)
can lessen, although never fully eliminate, detrimental loss of
information. Deliberate reflection on the scientific goal (total actin
or F-actin) and how this compares to what is actually recorded

(what are the limitations of my experimental approach?) is essential
for addressing bias during data interpretation.

The bias introduced by overlooked factors can be further alleviated
by making a conscious choice to place imaging results in proper
context. Context is important even at the earliest stages of
experimental design, where different labeling approaches for the
same protein can lead to different conclusions. For example, many
labeling strategies have been developed for actin, each with their own
strengths and weaknesses (Melak et al., 2017). Whereas actin–
fluorescent protein fusions highlight both filamentous and diffuse
actin (Fig. 1), phalloidin-based tags are specific for F-actin, leavingG-
actin invisible. Similarly, specimens expressing Lifeact (Riedl et al.,
2008) andGFP–actin, respectively, might initially exhibit similar actin
morphologies but will produce vastly different outcomes during a
fluorescence recovery after photobleaching (FRAP) experiment due to
the different labeling mechanisms of each probe (Belin et al., 2014;
Melak et al., 2017). In fact, the FRAP recovery of Lifeact does not
represent actual actin monomer turnover but rather the transient
exchange of Lifeact on the actin filament. In many cases, a single label
will not provide enough context to sufficiently answer a research
question. For example, immunostaining phosphorylated myosin
species alone does not provide enough information to determine in
which subcellular regions myosin is preferentially phosphorylated,
whereas imaging total myosin alone does not provide any information
on myosin activity. Only together can the two labels provide an
accurate picture of myosin contractility in the cell (Chew et al., 2002).

Information loss is not limited to labeling choices or acquisition
settings: all experimental parameters will exclude relevant
information, which must then be consciously acknowledged
during data interpretation. Even when images are appropriately
acquired, the choice of analytical parameters can end up
unintentionally excluding certain populations. For example,
object-tracking algorithms use a maximum distance parameter to
keep calculations computationally feasible, but this same parameter
can end up inadvertently excluding fast moving objects when its
value is too small (Aaron et al., 2019; Jaqaman et al., 2008). Proper
interpretation of such tracking results requires careful consideration
of whether populations might have been excluded owing to imaging
or analysis limitations, and the conscious acknowledgement of this
excluded information. Similarly, regions of interest should be
interpreted in the context of the larger specimen, as described below.
Throughout an experiment, continuing to place results in context
will help minimize biases in data interpretation.

Representative cells are only illustrative
Despite the importance of placing results in context, the very nature of
microscopy experiments requires an observer to select from a
population of interest. During image acquisition, physical limitations
lead to limited fields of view and thus require selection of a region of
interest (ROI). Although microscopists are constantly confronted
with the need for selection, it is worryingly easy to forget this context
during data interpretation. Presenting work to others often similarly
requires the selection of so-called ‘representative’ cells to illustrate a
process. In each case, the mere act of selection creates a vulnerability
for bias to steer results toward the assumptions of the experimenter,
and away from rigorous hypothesis testing.

No single cell or ROI can fully capture the heterogeneity present
across a biological population, yet such selection is frequently
necessary. For example, showing every cell on a microscope slide
might partially convey the extent of population heterogeneity
(Fig. 2A) but it will obscure cellular details that can only be seen in a
single cell image (Fig. 2B–D). Quantitative measures, such as

Box 1. Strategies against bias
Be thoughtful about experimental design
Thoughtful experimental design includes built-in checks on bias. In the
case of hypothesis-testing experiments, each step of the project should
be designed to challenge the hypothesis, rather than support it (Platt,
1964; Wait et al., 2020). Exploratory experiments can also benefit from
careful experimental design – iterative experimental design and pilot
studies can focus and refine hypotheses. Incorporating multiple
techniques into a project, such as comparing two labeling strategies or
comparing imaging results to biochemical assays, also strengthens data
interpretation. Data masking (also known as blinding) is a simple
approach to reduce the impact of preconceived notions, but it is woefully
underutilized in life science (Holman et al., 2015; Jost andWaters, 2019;
MacCoun and Perlmutter, 2015).
Use best practice guides – there are many!
Training and education can lessen acquisition and analysis mistakes that
reinforce cognitive biases (Imreh et al., 2023). There is a wealth of
guidance in the literature on experimental design (Jost andWaters, 2019;
Wait et al., 2020), sample preparation (Reiche et al., 2022), image
acquisition (Lee et al., 2018; North, 2006; Waters and Swedlow, 2008),
image analysis (Aaron et al., 2018; Aaron et al., 2019; see 2019 article by
Cimini at https://carpenter-singh-lab.broadinstitute.org/blog/when-to-
say-good-enough; Khater et al., 2020) and statistical techniques
(Bishop, 2020; Krzywinski and Altman, 2013; Makin and Orban de
Xivry, 2019; Nuzzo, 2014; Pollard et al., 2019) – take advantage of these
resources.
Take advantage of computational tools
Computational tools can minimize the hazards of choosing experimental
parameters and challenge naïve perceptions. Using imaging acquisition
software to automate ROI selection removes a source of user bias (Jost
andWaters, 2019). Attention to visualization choices, such as brightness
and contrast, can reveal underappreciated facets of a dataset.
Quantitative analysis can also provide a check on assumptions,
although a lack of critical discernment in the application of such tools
can introduce new biases. When interpreting quantitative results, it is
essential to understand the assumptions of the method by which they
were produced.
Contribute as a member of the scientific community
Preconceptions must be mitigated by individual researchers, but the
broader research community is also essential for addressing bias.
Reproducible science is enabled by the combined efforts of researchers,
reviewers, journals and institutions (Munafò et al., 2017) through
practices such as proper methods reporting (Aaron and Chew, 2021;
Heddleston et al., 2021; Montero Llopis et al., 2021), sharing data and
metadata in appropriate repositories (Boehm et al., 2021; Linkert et al.,
2010), and pre-registering studies (Kupferschmidt, 2018).
Include context and test alternative hypotheses
The cumulative effects of bias become most apparent during data
interpretation. Always keep in mind the choices that were made at each
step of the experiment – technical limitations and practical choices can
lead to limited fields of view or confounding experimental variables.
Automated analysis tools can hide intermediate calculation steps or be
sensitive to chosen parameters. Consider what alternative hypotheses
could explain the observed results, and design approaches to test them,
which will strengthen conclusions.
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median cell size (Fig. 2E), can help guide cell selection. However, a
cell with representative size (Fig. 2B) might display other
morphology (e.g. circularity) that is atypical (Fig. 2F,G). A valiant
attempt can be made to find a cell that is representative across a wide
range of features (Fig. 2C,D), yet there will always remain
unexplored features in which any given cell may be an outlier,
rather than the norm.
Although no one specimen can be truly representative of a

population, a selected ROI can still provide a valuable illustration.
Many imaging acquisition software packages include options to
randomly select the fields of view for imaging, which removes user
choice as a source of bias (Jost and Waters, 2019). Statistical
measurements can be used to determine the number of ROIs
appropriate for the questions of interest in the context of the
variability in the model system (Krzywinski and Altman, 2013;
Pollard et al., 2019). Similarly, software tools can be used to identify
representative images (Markey et al., 1999), although this approach
requires thoughtful definition of the quantitative metrics of interest.
Inclusion of multiple representative images in a figure can help to
illustrate population heterogeneity; however, the choice of
heterogeneous features to illustrate will be as susceptible to
selection bias (Table 1) as any individual image and thus the set
of images should be chosen with care. In addition to these practical
techniques for ROI selection, the illustrative nature of any single
sample should be kept at the mental forefront, especially when a
chosen sample appears to support an as-of-yet untested hypothesis.
Illustrative samples are useful for hypothesis generation, but
extrapolations derived from any single ROI should always be
rigorously evaluated. Careful testing of the hypothesis should be
ensured by a combination of masked image assessment (Holman
et al., 2015; Jost andWaters, 2019;MacCoun and Perlmutter, 2015),

automatic analysis techniques (discussed in a later section), and,
whenever suitable, complementary approaches, such as biochemical
assays.

Seeing is deceiving
The impact of bias on microscopy experiments is especially
pernicious when visual assessment of an image appears to confirm
preexisting hypotheses. Although humans excel at finding visual
patterns (Treisman, 2002), this ability can be skewed or even utterly
inaccurate, leading to perceptual illusions. This distortion can take
the amusing and largely harmless form of seeing animals in the
shapes of clouds or the face of a man on Mars (Sagan, 1995; Voss
et al., 2012), but it can also lead to serious errors with severe
consequences. The explosion of literature on SARS-CoV-2 in 2020
included many images of viral particles in presumptively infected
tissues (Fig. 3A). Regrettably, biased by the expectation of
infection, some researchers in fact misidentified endoplasmic
reticulum (ER) or multivesicular bodies as viral particles
(Dittmayer et al., 2020). This type of bias, which is exacerbated
by our preconceived expectations, along with pressure to provide
timely and novel results, can be reduced by testing alternative
hypothesis (what other membrane-bound structures could be
expected in this tissue?), and by preestablishing analysis
approaches (e.g. identifying particles by their ribonucleoprotein
density) even before image acquisition begins (Wait et al., 2020).
Complementary experimental approaches, such as confirming the
presence of viral particles with immunolabeling, can also be a check
on visual intuition.

Despite such perceptual illusions, visualization remains a
powerful tool for discovery. Visual inspection of microscopy data
requires choosing various visualization parameters, providing an
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Fig. 1. Overlooked information biases data interpretability. (A) A contrast-adjusted summed intensity projection of a confocal microscopy image of a Ptk2
cell (a Potorous tridactylus epithelial kidney cell line) labeled with actin–GFP (LSM 980 microscope; Plan-Apochromat 63×/1.40 oil objective; 488 nm laser;
134 z-slices with an interval of 250 nm; 15-min intervals between timepoints). At time t=0, 15 µM Y-27632 (a Rho kinase inhibitor) was added. After 60 min of
treatment, actin stress fibers have been disrupted. (B) The same cell was imaged at the same time points using a large negative offset. (C) Merged image
comparing the 60-min timepoint of A and B. Information in the green regions has been overlooked by the imaging choices in B, including small filamentous
structures. (D) Analysis of normalized actin intensity over time in the two imaging conditions gives differing impressions of the effect of Y–27632. Summed
intensities within the cell boundary were normalized to the first time point (dashed line). Scale bars: 25 µm. Additional imaging and analysis details are
provided in the supplementary section.
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additional opening for perceptual bias. Changing image display
contrast is a basic manipulation that can instantly change our
perception of a dataset. Not only does overall image contrast impact
our impression of the data, but also the relative contrast of objects
draws our initial visual attention to larger or brighter objects, which
can cause objects such as small, dim nuclei to be overlooked
(Fig. 3B). Perhaps less commonly appreciated is the impact of
temporal contrast on our assessment of moving objects. For
instance, varying the playback speed of a microscopy time-series
will influence whether fast- or slow-moving objects will appear
more prominent by changing the magnitude of the associated
temporal changes. In all cases, visual prominence can steer attention
away from important features and reinforce preconceived notions
about a dataset. Fortunately, all major image-processing software
packages contain tools to adjust both spatial and temporal contrast,
providing an easy visual check on the biased perception of a set of
images. For example, saturated display contrast might reveal
previously unappreciated fine protrusions, while an increased
playback speed could expose subtle morphogenic movements.
Similarly, most software packages allow for the adjustment of
gamma, which adjusts the contrast of dim and bright objects
unequally and thus can reveal visual features that might be
underappreciated with simpler contrast adjustments. However,
non-linear adjustments such as gamma should always be used
with care and appropriately described in figure legends and methods
sections (Jonkman et al., 2020). Technical limitations, such as data
loading (Pietzsch et al., 2015) or limited screen resolution (Healey

and Sawant, 2012; Ni et al., 2006), might limit perceptual
understanding of large datasets; in these cases, it is helpful to
intentionally ask how initial visual interpretations fit into the larger
context of the data. Exploration and hypothesis generation are
essential to scientific progress; hypotheses generated by visual
inspection should be made with awareness of visualization choices
and followed by rigorous testing.

Visual patterns include not only the perception of isolated
objects, but also the relationships between them. Distortions of this
perception can lead to assumed relationships that do not exist, such
as a visual assessment of ‘colocalization’ in a maximum intensity
projection or due to channel bleed-through (Jost and Waters, 2019).
Limited resolution might likewise indicate relationships that would
be rejected if higher resolution information was available (Aaron
et al., 2018; Jost and Waters, 2019). Similarly, proximity promotes
an intuitive visual argument for object interaction but can be
treacherously misleading. Consider the distribution of ER and
endosomes within a cell (Fig. 3C). Visualizing the three-
dimensional distribution of these organelles reveals many
instances of endosomes in close proximity to the ER (white
arrowheads, Fig. 3D). Tasked with testing the hypothesis that
endosomes and ER interact, it would be tempting to use these
examples of proximity as supporting evidence. However, actively
countering bias requires considering alternative hypotheses
(congruence bias, Table 1). In this case, an alternative hypothesis
is that cytoplasmic crowding will naturally result in the occasional
proximity of any given pair of organelles. Such a hypothesis can be
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Fig. 2. A representative cell cannot fully encapsulate a population. (A) A tiled widefield microscopy image of U2OS cells (Nikon Eclipse Ti inverted
widefield microscope; Plan Apo λ 20×/0.75 air objective; Lumencor Spectra X LED light engine; 10×10 tiled image). ROIs for B–D are indicated. Scale bar:
1 mm. (B–D) Representative cells selected with properties described in E–G. Cells were stained for tubulin (green) and DAPI (magenta). Scale bars: 20 µm.
(E) Histogram of the cell areas for the population shown in A, with the values of each of the cells in B–D indicated by colored lines. (F) Histogram of
circularity, which measures how round each cell is (a perfect circle has a circularity value of 1). (G) Histogram of eccentricity, which measures the elongation
of a cell shape (a perfect circle has an eccentricity of 0, while a line has a value of 1). A cell which has a median value for one property might have an
extreme value for another property. Additional imaging and analysis details are provided in the supplementary section.
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tested by comparing the measured distances between the organelles
to those distances that would be measured if the organelle locations
were computationally randomized (Campanello et al., 2021). This
check on bias leads to the realization that the observed endosomes
are indeed further from the ER than would be expected by random
chance (Fig. 3E), contradicting the visual intuition of Fig. 3D.
Although this result does not exclude the possibility of interactions
between the ER and endosomes, it does indicate that proximity
alone is insufficient to make this claim. Complimentary metrics,
such as measuring the coordinated motion of the organelles over
time (Wu et al., 2018), the use of contact labels such as split-GFP
(Kakimoto et al., 2018), or the use of biochemical pulldown assays
(Guillén-Samander et al., 2019), would provide additional support
for the initial imaging results.
This example is not isolated. Human perception frequently

overestimates the significance of relationships in both space and
time. A key illustration is our assessment of randomness. Evenly
spaced objects are intuitively perceived as random despite
underlying non-random relationships, while true randomness will
inevitably include clusters of objects (Fig. 3F). Similarly, clusters of
events in time instinctively seem meaningful, but can be the natural
result of random chance (Gilovich et al., 1985). Quantitative
approaches for testing randomness, such as the use of Ripley’s K

function (Khater et al., 2020), can be used to minimize this
perceptual distortion. In other cases, illusory relationships might
appear due to global trends in the studied biological system. For
example, co-alignment of cytoskeletal components, such as
vimentin and microtubules, might indicate a direct relationship, or
co-alignment might reflect that both vimentin and microtubules
respond to the overall polarity of the cell. Careful quantification can
help to disentangle the local and global factors that contribute to an
observed phenotype (Zaritsky et al., 2017) and thus distinguish
between competing hypotheses. Perceptual distortions will always
be present in our observation; however, testing alternative
hypotheses and using quantitative tools can provide strong checks
on our visual assumptions.

Quantification does not prevent bias
Although quantification can be a strong check on intuition, the act of
quantification alone does not guarantee bias-free data interpretation.
As with any part of a microscopy protocol, quantification should be
designed to challenge, rather than support, a hypothesis. In addition,
alternative hypotheses for observed results should always be
considered. This is notably true when presented with automated
results that support the hypothesis, where there is a strong
temptation to consider the results complete without further
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scrutiny. As an illustration of this pitfall, consider an analysis
protocol designed to test the hypothesis ‘drug X increases cell area’.
Given a misplaced trust in the impartial nature of automated
analysis, it is tempting to accept quantitative results in support of the
hypothesis at face value (Fig. 4A). However, it is essential to
compare quantitative results to the underlying data (Schmied et al.,
2023). In this case (Fig. 4B), the results suggest an over two-fold
increase in cell area, whereas the images themselves do not
noticeably indicate any such changes. Even though the lack of
difference in the images is clear, misplaced faith in automatic
analysis combined with confirmation bias can make it easy to
overlook even the blatantly obvious. Such a discrepancy should
prompt investigation into the analysis approach, which in this case
would reveal that touching cells were misinterpreted as single cells
(see supplementary section).
Although all results should be viewed with a critical eye for

potential discrepancies, confirmation bias (Table 1) pushes us to
accept anticipated results at face value. Unexpected results, on
the other hand, often prompt a round of troubleshooting. If the
previous example featured the opposite hypothesis (e.g. drug X

decreases cell area), it would be a natural response to consider
alternative explanations for the results in Fig. 4A and thus further
investigate the analysis details. Whether or not quantitative results
support a hypothesis, any approach should be as rigorously
designed and tested as any other step of a microscopy project. For
example, visualizing the intermediate steps of analysis protocols
(such as segmentation results in the previous example) are a key
safeguard against bias, as well as unintentional computational
errors.

The development of clear and testable hypotheses can further
reduce bias introduced by preconceived expectations. Although
broad concepts such as ‘dynamics’ or ‘microenvironment’ are
biologically intuitive at a high level, they introduce ambiguity into
an experiment (Wait et al., 2020). Specifying what it would mean to
measure such concepts not only strengthens a quantitative approach,
but also improves the development of the entire experiment.
Consider the study of focal adhesion maturation, where
quantification of immature versus mature focal adhesions is of
interest. Given two cells with distinct morphologies (Fig. 4C), there
are multiple viable approaches to characterize adhesions, and thus
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the careful definition of ‘immature’ versus ‘mature’ becomes an
important factor for data interpretation. Focal adhesions are
commonly assessed by their size (Dugina et al., 2001; Fokkelman
et al., 2016), and, in this case, a size-based analysis finds that Cell 1
contains more immature adhesions (Fig. 4D). However, adhesions
also are characterized by their distance from the cell edge (Parsons
et al., 2010) and quantification of this property leads to the opposing
conclusion that Cell 2 contains more immature adhesions (Fig. 4E).
Although both metrics might be biologically justifiable and were
carefully quantified, neither measure alone provides enough context
to fully understand the focal adhesion phenotype in these cells.
Immature adhesions tend to be smaller than large mature adhesions,
but small objects could also indicate disassembling adhesions,
especially when small adhesions are found away from the leading
edge (Parsons et al., 2010). Similarly, although immature adhesions
tend to form near the leading edge, mature adhesions can be found
here as well, such as the those seen in the protrusions of Cell 2
(Fig. 4E, magenta adhesions). In neither case is the quantification
of these features ‘incorrect’, but biased assumptions about an
experimental system or academic pressure to support a hypothesis
could easily push a researcher to select one metric rather than the
other, at the expense of better understanding of the biological
system.
Metrics should be chosen not because they give the expected

results, but rather because they best reveal a feature of the biological
system that can test the hypothesis. For the previous example, a
combination of both focal adhesion size and location can provide
a richer and more informative set of results than either value alone,
a realization that is reflected in a wealth of multiparametric focal
adhesion literature (Berginski et al., 2011; Kumari et al., 2023
preprint; Winograd-Katz et al., 2009). The process of focal adhesion
maturation reflects changes over time, and thus complementary
experimental approaches such as live-cell timelapse imaging can
also provide a more nuanced view of focal adhesion classification.
Previously publishedmetrics (e.g. adhesion size) can provide a solid
starting point for understanding an experimental system but must
always be put into context. Data interpretation is a key entry point
for bias, and assumptions must be actively checked when
interpreting quantified results, regardless of how accurately the
quantification was implemented.
Although each of the examples described above relied on

automated analysis approaches (i.e. they did not require manual
annotation or counting of objects by the user), observer bias was
easily incorporated into each method. Here, we should note that the
examples in Fig. 4B do not represent distinct experimental
conditions, but rather are regions deliberately pulled from the
image shown in Fig. 2A to illustrate that it is disturbingly easy to
manipulate analysis results when focused on a specific goal.
Similarly, the images in Fig. 4C are two identically treated cells
imaged under the same conditions that were chosen to illustrate
adhesion variability. When implemented subconsciously, this type
of selection bias (Table 1) towards supporting, rather than
rigorously testing, a hypothesis can completely undermine the
validity of quantitative results. Mitigating quantitative bias requires
judicious consideration of the chosen analysis approach along
with validation methods appropriate to both the biological question
and computational tool at hand (Chen et al., 2023; Lambert and
Waters, 2023). Application-specific safeguards for common image
processing tasks are available in several useful reviews, including
discussions of object segmentation, colocalization (Aaron et al.,
2018) and particle tracking (Aaron et al., 2019). Similarly,
accounting for figure design (Lord et al., 2020) and statistical best

practices (Bishop, 2020; Curran-Everett, 2013; Makin and Orban de
Xivry, 2019; Nuzzo, 2014; Wasserstein and Lazar, 2016) both
strengthens experimental design and helps counteract biases in
quantification, although it should be noted that misuse of statistical
principles can add to, rather than diminish bias.

The many ways in which preconceptions can impact a
microscopy project (Table 1) highlight the importance of
explicitly addressing bias. An experiment cannot be fully
disentangled from the experimenter, and good intentions alone
cannot overcome the predisposition to see what is already believed.
Although quantification is a powerful and necessary check on initial
perceptions, like any tool, it can quickly become a double-edged
sword. It is thus the responsibility of every researcher to purposely
design experiments with built-in safeguards against bias and to
always test alternative hypotheses for observed results.

Conclusions and perspectives
The power of modern microscopy allows us to visualize a multitude
of living systems across a wide range of spatial and temporal scales.
And yet, even visually stunning datasets are limited in their impact
without the ability to interpret those results in context. The presence
of bias in science, or more specifically in microscopy, is not a new
concept (Jost and Waters, 2019; Munafò et al., 2017). However, the
diversity and subtlety of bias in microscopy experiments is often
underappreciated. The types of bias discussed in this article are
commonly encountered in many real-life research scenarios. Rather
than deliberate misconduct, those situations are more commonly
the result of well-intentioned researchers led astray by steadfast
adherence to their hypothesis or misplaced faith in the absolute
veracity of image quantification. It thus bears emphasizing that bias
must be (1) actively acknowledged and (2) rigorously guarded
against at all stages of a microscopy project.

Acknowledging bias is universally important but it is especially
essential with concepts that are familiar. Although any microscopist
will acknowledge that no single experiment can reveal all features of
a specimen, it is just as easy to forget this critical context when
interpreting imaging results. Similarly, although most researchers
are aware of the importance of carefully selecting cells or regions of
interest, tempting yet poorly supported extrapolations from a single
‘representative’ cell can quickly steer an experiment away from
informative results. Indeed, data interpretation is the ultimate stage
at which the cumulative effects of even subtle bias can lead to
significantly distorted conclusions.

The cumulative impact of bias makes it all the more essential to
emphasize that we cannot always trust our own visual perception
when interpreting images. The bulk of life science research
ultimately relies on observation (Wait et al., 2020), yet the risks
posed by perceptual biases are not only pervasive, but insidious.
Purposeful discipline is required to confront such distortions in
our observations. Perceptual biases can often be alleviated with
image analysis, but even reproducible quantification can equally
perpetuate or even escalate bias if not implemented with care. The
false sense of security provided by automated quantification must
never substitute for rigorous scientific reasoning. The illustrative
examples considered here cannot fully capture the multitude of ways
in which bias can influence microscopy, but the solutions we
discuss are broadly applicable to any experiment. Persistent
vigilance in designing robust tests of hypotheses, including
testing alternative explanations, is key to supporting impactful
research results.

Although addressing biases at the earliest stages of hypothesis
formulation and experimental design is crucial, the scientific
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enterprise also relies on peer evaluation to identify and challenge
biased conclusions. However, this check on biases is only effective
if the wider scientific community has access to complete
information about the underlying experiments, especially the
types of methodological details that are often omitted from
biomedical research publications (Marques et al., 2020). Careful
reporting of experimental details (Heddleston et al., 2021; Montero
Llopis et al., 2021) and downstream analysis (Aaron and Chew,
2021; Schmied et al., 2023) are key to confronting bias. The
growing movement to share imaging data in appropriate
repositories can also support the assessment of research results
(Linkert et al., 2010; Swedlow et al., 2021; Williams et al., 2017).
Commensurate with this trend is the community effort to advocate
for the disclosure of full metadata along with bioimages (Boehm
et al., 2021). Similarly, various forms of preregistered studies can
be used to create guardrails around the choices an observer makes
(Kupferschmidt, 2018). Such open science publishing practices
allow sunlight (i.e. public scrutiny) to be a disinfectant for bias.
Transparent open science practices are vital for scientific

reproducibility. However, unthinking replication is more likely to
propagate than eliminate the deeply concealed bias in the original
work. The oft-repeated refrain of ‘seeing is believing’
notwithstanding, the notion of ‘belief’ should never be
associated with scientific practice. It shackles scientists with
tunnel vision rather than freeing their curiosity to drive discovery.
No amount of quantification and transparency can replace
scientific rigor. Put simply, the veneer of authority provided by
undiscerning use of methodological best practices is never a
substitute for critical thinking.
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SUPPLEMENTAL MATERIALS AND METHODS 

Actin Imaging and Analysis (Fig. 1) 

Ptk2 cells (ATCC CCL-56) were maintained in EMEM (ATCC 30-2003) supplemented with 10% FBS (ATCC 

30-2002) and 2 mM L-glutamine (Gibco 25030081) in an incubator maintained at 5% CO2 and 37°C. Cells 

were transfected with a Bio-Rad Gene Pulser Xcell Electroporation System. An exponential protocol with 

settings 220 V, 950 µF, ∞, 4 mm was used. Cells were trypsinized with 0.05% trypsin-EDTA (Gibco 

25300054), and 0.7x106 cells were transfected in 200 µl cold OptiMEM (Gibco 31985070), with 0.8 µg 

GFP-Actin, and plated into 35 mm glass bottom dishes (MatTek P35G-1.5-20-C). Media was changed on 

the transfected cells 17 hours later, and imaging occurred around 24 hours after transfection. Prior to 

imaging, media was changed to phenol red free F12 media (Caisson HFL12-500ml) supplemented with 

10% FBS. 

A prepared sample was placed on the stage of an LSM 980 confocal microscope (Zeiss, Germany) with a 

stage top incubator warmed to 37°C. The sample was surveyed to find an isolated cell with prominent 

stress fibers using a Plan-Apochromat 63×/1.40 Oil DIC M27 objective (Zeiss). Two sequential acquisition 

tracks were created in Zen 3.5 (Zeiss) acquisition software: Channel 1 used a 488 nm laser (17 µW), 

detection range of 378-734 nm, detector gain of 650 V, and a positive detector offset of 12, while 

channel 2 used a 488 nm laser (13 µW), detection range of 378-734 nm, detector gain of 650 V, and a 

negative offset of 10. Power measurements were performed in front of the objective. The cell was then 

imaged in 3D over time with the following parameters the same across both channels: 1 AU pinhole (58 

µm); pixel time 1.54 µs; frame time 1.89 s; unidirectional scanning; 8-bit; image pixel size = 263 nm; 

image size = 134.69×134.69 µm2; 1× zoom. A Z-stack comprising 134 slices with an interval of 250 nm 

was acquired every 15 minutes. After an isolated cell was identified, Y-27632 (Tocris Cat#1254) was 

added to a final concentration of 15 µM at the start of the time lapse imaging. 

Actin intensity analysis for each channel was conducted in FIJI (Schindelin et al., 2012), using ImageJ2 

2.9.0/1.53t with Java 1.8.0_172. A threshold for the z-stack was set using the Triangle method with a 

dark background and the option for ‘stack histogram’ selected. A 3D morphological closing operation 

using a ball with x, y, and z radius of 4 was implemented using the MorphoLibJ library (Legland et al., 

2016). The operation ‘Fill Holes’ was used to create a continuous mask across the cell, and objects 

smaller than 1000 voxels were removed using ‘Size Opening 2D/3D.’ This mask was then used to 

measure the cell area in each z-slice. The mask and original image were then combined using an AND 
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operation. The integrated intensity for each slice was measured from this resultant image. These 

processing steps can be completed using the macro ActinSurvivorBias.ijm (see Data Availability). 

Integrated intensities were divided by the area of the cell, and the plot of intensity versus time was 

further divided by the value at t = 0 for the plot in Fig 1D. Images in Fig 1A-C represent summed intensity 

projections of the 3D stack which were independently contrast adjusted using the imadjust function in 

MATLAB 2021b (Mathworks). 

 

Cell Population Imaging (Fig. 2 and Fig. 4) 

U2OS cells (ATCC HTB-96) were grown in DMEM (Gibco 11995) supplemented with 10% Fetal Bovine 

Serum (Gibco 261400). When they reached 80% confluency, they were dissociated with 0.25% Trypsin-

EDTA (Gibco 25200) and replated on 18 x 18 mm coverslips (Zeiss, SKU: 474030-9000-000). Twenty-four 

hours post replating, they were fixed in a pre-warmed to 37°C solution of 0.8% formaldehyde (EMS 

15700) and 0.1% glutaraldehyde (EMS 16530) in PBS (Gibco 10010023) for 5 minutes, followed by a 

quick rinse and quenching with 1 mg/ml sodium borohydride in PBS for 7 min at room temperature. 

Permeabilization was done in 0.2% Triton X-100 in PBS for 5 min. The sample was further reduced and 

preabsorbed in 1 mg/ml lysine in PBS for 5 min. A mixture of mouse anti-tubulin (Sigma T9026-100ul, 

used at 1:400 dilution) and rabbit monoclonal anti-lamin A/C (Invitrogen MA5-35284, used at 1:200 

dilution) diluted in PBS containing 1% BSA (A2153-50G), was added to fixed cells and incubated for 30 

min at 37°C. The sample was washed for 5 min in PBS containing 0.05% Tween-20 and 2 × 5 min in PBS 

only. A mixture of goat anti-mouse Alexa 488 (Invitrogen A11001, used at 1:400), goat anti-rabbit Alexa 

568 (Invitrogen A11011, used at 1:200) in PBS containing 1% BSA was added to the sample and 

incubated at 37 °C for 30 min. The sample was washed 3 × 5 min as in the previous step. After the last 

wash in PBS, the sample was incubated in a 100 ng/ml DAPI solution (Sigma D9542) for 1 min, was 

quickly rinsed, and then mounted on Prolong Gold Antifade Mountant (Invitrogen P36934). The sample 

was kept at room temperature in the dark to cure for 24 hours and moved to a -20 °C freezer for storage. 

The fixed sample was placed on an Eclipse Ti inverted widefield microscope (Nikon, Japan) and imaged 

using a Plan Apo λ 20×/0.75 air objective (Nikon). Cells were illuminated with a Spectra X LED light 

engine (Lumencor) using a DA/FI/TR/Cy5/Cy7-5X-A multi-band dichroic mirror (Semrock), and images 

were captured using a Zyla sCMOS camera (Andor, Ireland). Three channels for DAPI, Tubulin, and Lamin 

were captured with the following excitation peaks, emitters, exposure times, and powers, respectively: i) 

395 nm, 435/35 nm emission filter, 50 ms, and 1.8 mW, ii) 470 nm, 515/30 nm emission filter, 40 ms, and 
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8.1 mW, iii) 555 nm, 595/40 nm emission filter, 50 ms, and 1.7 mW. Power measurements were 

performed in front of the objective. A 10 x 10 tiled image of the slide was captured using the Perfect 

Focus System (PFS, Nikon) resulting in a final image of 6 mm x 6 mm (16-bit, pixel size = 323 nm). Tiles 

with 10% overlap were stitched in NIS-Elements acquisition software (version 5.42.03, Nikon) using the 

stitching via blending and image registration options. 

 

Representative Cell Analysis (Fig. 2) 

Cell morphological properties were analyzed in MATLAB 2021b (Mathworks). The tubulin channel was 

binarized using an intensity threshold of 200, objects smaller than 1000 pixels were removed, holes in 

the binary image were filled, and objects touching the border were removed. The DAPI channel was 

binarized using an intensity threshold of 500, objects less than 500 pixels were removed, and holes in 

the object were filled. MATLAB’s watershed function was used to separate overlapping nuclei. To analyze 

only single cells, any object in the tubulin channel containing more than one nucleus was removed from 

further analysis. The function regionprops was used to measure the area, circularity, and eccentricity of 

all remaining objects in the tubulin channel. Example cells were manually selected based on these 

properties to illustrate the concepts in Fig 2. Images in Fig. 2A-D were contrast adjusted for presentation 

using the function imadjust. All panels in Fig. 2 can be recreated using the script 

analyzeRepresentativeCells.m (see Data Availability). 

 

Zebrafish Imaging (Fig. 3D) 

The zebrafish image in Fig. 3D was provided by Usha Kadiyala (University of Michigan). A transgenic H2B-

HaloTag zebrafish embryo (Tg(β-actin2:H2B-HaloTag) as described in (Wan et al., 2019)) was imaged on a 

SiMView Light Sheet microscope using two Special Optics 6.4x 0.2 water dipping objectives for 

illumination and two Nikon 16x/0.8 water dipping objectives for detection. Imaging excitation was 638 

nm using a 638 642/10 excitation filter and a BLP01-647R emission filter. Images were collected on two 

Orca Flash4 sCMOS cameras with an exposure time of 3 ms and a sweep of 20 ms. 

Opposing camera images were combined using the ImageJ plugin BigStitcher. The second camera was 

flipped about the x-axis, then two sets of interest points were detected for each image. The coarse 

interest points used a 2x downsampling, a sigma of 1.8, and a threshold of 0.0075. The fine interest 

points used a 1x downsampling, a sigma of 2.7, and a threshold of 0.0085. The coarse interest points 
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were used for registration with the ‘precise descriptor-based’ algorithm, only allowing for translations. 

The fine interest points were next used for registration with the ‘assign closest points with ICP’ 

algorithm, allowing for affine transformations. These images were then exported from BigStitcher as one 

fused image, which was visualized using Imaris 10.0.0. 

 

Endosome Imaging and Analysis (Fig. 3) 

Ptk2 cells (ATCC CCL-56) were maintained in EMEM (ATCC 30-2003) supplemented with 10% FBS (ATCC 

30-2002) and 2 mM L-glutamine (Gibco 25030081) in 5% CO2, 37°C incubator. Cells were transfected with 

a Bio Rad Gene Pulser Xcell Electroporation System. An exponential protocol with settings 220 V, 950 µF, 

∞, 4 mm was used. Cells were trypsinized with 0.05% trypsin-EDTA (Gibco 25300054), and 1.0x106 cells 

were transfected in 200 µl cold OptiMEM (Gibco 31985070), with 0.35 µg mEmerald-Sec61-C18, and 

plated into 35 mm glass bottom dishes (MatTek P35G-1.5-20-C).  

Media was changed on transfected cells 18 h later to serum free media: OptiMEM containing 0.5% BSA 

(Biotium 22013) and 25 mM HEPES (Gibco 15630080). After 30 min, cells were stained with 25 µg/mL 

Transferrin 647 (Invitrogen T23366) in serum free media. After 15 min of Transferrin staining, media was 

changed to phenol red free F12 media (Caisson HFL12-500ml) supplemented with 10% FBS for imaging. 

The prepared sample was placed on the stage of a LSM 980 confocal microscope with Airyscan (Zeiss) 

with an incubated enclosure warmed to 37°C and imaged with a Plan-Apochromat 63×/1.40 NA Oil DIC 

M27 objective (Zeiss). In Airyscan SR mode, endosomes and ER were imaged with a 639 nm laser at 21 

µW and a 488 nm laser at 4 µW, respectively, with power measurements made at the front of the 

objective. For both channels, fluorescence was detected using a 488/639 multi-band dichroic mirror with 

no additional emission filters and detector gain of 850 V. A Z-stack was acquired comprising 52 slices 

using a 0.17 µm step interval (8.67 µm total). Images were acquired with 0 offset and a pixel dwell time 

of 1.13 µs using unidirectional scanning. The size of the resulting 16-bit images (pixel size = 0.043 µm) 

were 78.21×78.21 µm2 (1839×1839 pixels2). Airyscan Processing (3D auto) was applied using a strength 

of 9.6 for the endosomes and 8.9 for the ER. 

ER and endosomes were segmented and analyzed in MATLAB 2021b (Mathworks). The ER image was 

preprocessed by subtracting a Gaussian blurred image (filter of size 20 voxels) from the original image, 

and the processed image was binarized using a threshold of 800. Objects smaller than 50 voxels were 

excluded. The cell boundary was found by dilating each z-slice of the binary ER image with a disk of 8 
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pixels, filling any image holes, and then eroding with a disk of size 8 pixels. Objects smaller than 106 

voxels were removed from the cell segmentation (Fig. S1A). The nucleus was segmented by thresholding 

the ER image with a value of 1200, objects smaller than 500 voxels were removed, and holes were filled 

in the inverted binary image. Afterwards, objects less than 5000 voxels were moved, the binary image 

was morphologically closed with a sphere of radius 5 voxels, and any remaining holes in the binarization 

were filled. The cell segmentation and nucleus segmentation were used together to define a valid region 

for the ER and endosome segmentation, as well as the randomization steps described below. ER 

segmentation in this valid region is shown in Fig. S1B. Endosome centroids were located by processing 

the endosome images with a 3D bandpass using a lowpass of 2 voxels and a highpass of 11 voxels. A 

threshold of 40 on the bandpass images was used to find peaks to pixel level accuracy, which were then 

found with sub-pixel level accuracy using the method described by Crocker & Grier, which was later 

adapted for MATLAB (Blair and Dufresne). The endosome centroids for a single slice are shown in Fig. 

S1C. 

The coordinates of the segmented ER and cell body were used to define bounding volumes using the 

MATLAB function alphaShape. Together with the endosome centroids, this creates a 3D segmentation of 

the cell that can be used for further measurements (Fig. S1D). The distance of each identified endosome 

from the ER boundary was measured using Euclidean distances (Fig. 3E, magenta line). These distances 

were compared to 100 iterations of randomization of the endosome locations. Randomization required 

that each endosome be inside the defined cell body bounding volume, and that it be 11 voxels away 

from any other points. This second criterion, which restricts endosome neighbor distances, is also 

implemented in the initial endosome finding during the subpixel accuracy step and reflects the 

approximate size of each endosome. Fig. 3E depicts the distance distributions of all 100 iterations of the 

randomization as individual gray lines; due to the similar in these distributions, they form a smeared gray 

band in the figure. The randomized locations of the endosomes for the first 4 iterations are visualized in 

3D in Fig. S1E. The corresponding distance distributions are highlighted in Fig. S1F to show that the 

variability in each randomized case is much less than the difference between each randomized case and 

the actual, imaged endosome positions. 

Images were rendered in 3D for Fig. 3D using the AGAVE 3D pathtrace image viewer from the Allen 

Institute for Cell Science (https://www.allencell.org/pathtrace-rendering.html). Before rendering, images 

were preprocessed in ImageJ: The ER channel was background subtracted using a Gaussian blur of size 
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10 pixels. The endosomes were processed by subtracting an image filtered with a Gaussian of size 7 

pixels from an image filtered with a Gaussian of size 3 pixels to highlight small spherical objects. 

 

 
Fig. S1. Method of endosome randomization. A) The endoplasmic reticulum (ER) channel was 
used to find the cell boundary, shown in orange on an example z-slice. B) ER structures were 
segmented using background subtraction followed by thresholding. C) Endosomes were 
segmented by bandpass filtering the image and then finding subpixel-level peaks in the image. 
Peaks found in the visualized z-plane are shown with a magenta circle (o) while peaks in the 
nearby planes are indicated by a magenta dot (·). D) The segmentations shown in A-C were used 
to create a combined 3D segmentation of the structures (ER in green; endosomes in magenta). 
E) The location of the ER was held constant while the endosome locations were randomized. 
The first four randomizations (of 100) are shown as 3D visualizations of the cell. F) The imaged 
locations of the endosomes (e.g., the locations in D) can be compared to the randomized 
locations. The four randomized examples shown in E are highlighted as lines of the same color 
as the endosomes in E on top of the gray lines indicating all 100 randomizations. 
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Randomization Visualization (Fig. 3F) 

To illustrate random placement of objects, 800 independent x and y values were generated and plotted 

in the arbitrary range of 0 to 1. To visualize a dispersed (non-random) process, random points were 

generated with the constraint that they be 0.02 units away from any other point. Random x and y values 

were generated, compared to existing points, and if they met the distant constraint, kept, until a total of 

800 points were generated. 

 

Area analysis (Fig. 4) 

Regions of interest from the tiled cell population in Fig. 2A were manually selected to illustrate the 

quantification concepts; no experimental drug treatments were applied to the cells. For each of the two 

chosen ROIs, the tubulin channel and DAPI channel were binarized as described in the Representative 

Cell Analysis section. The MATLAB function regionprops was used to measure areas of all binarized 

objects. Fig. 4A shows the area of all binarized objects: 28 control objects with a mean area of 1.9 x 103 

µm2 and 19 ‘Drug X’ objects with a mean area of 4.5 x 103 µm2. Note that this choice of quantification 

measures groups of cells as one large, combined object, in contrast to the representative cell analysis in 

Fig. 2, which only considered individual cells. 

 

Focal adhesion imaging and analysis (Fig. 4) 

MEF (Lonza Bioscience M-FB-481) cells were maintained in DMEM (Gibco 11995-065) supplemented 

with 10% FBS (ATCC 30-2002) and 2 mM L-glutamine (Gibco 25030081) in 5% CO2, 37C incubator. Cells 

were transfected with a mScarlet-Talin1 label using Mirus X2 transfection reagent at a 1:3 DNA:X2 

reagent ratio. Transfection was performed in suspension with the cells at the time of plating. Cells were 

trypsinized with 0.05% trypsin-EDTA (Gibco 25300054) and 0.07x106 cells were plated to 35 mm glass 

bottom dishes (MatTek P35G-1.5-20-C). Media was changed on the transfected cells 10 h later, and 

imaging occurred approximately 14 h after transfection. Media was changed for imaging to phenol red 

free F12 media (Caisson HFL12-500ml) supplemented with 10% FBS. 

Cells were imaged with a CSU-W1 confocal scanning unit mounted onto an inverted Ti2 Eclipse 

microscope (Nikon) with an incubated enclosure warmed to 37°C. Images were collected using NIS-

Elements acquisition software (Nikon) and a Plan Apo λD 100×/1.45 NA oil objective (Nikon). Cells were 

illuminated with a 561 nm laser (0.46 mW measured at the front of the objective) using an exposure 
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time of 300 ms. Fluorescence was detected using a Di01-T405/488/568/647-13x15x0.5 multi-band 

dichroic mirror (Semrock) along with 705/72 nm and 610/75 nm emission filters, respectively. Single 

images (16-bit, pixel size = 0.065 µm) were captured using an ORCA-Fusion BT sCMOS camera 

(Hamamatsu, Japan) with PFS enabled. 

The Trainable Weka Segmentation plugin (v 3.3.2) for ImageJ (Arganda-Carreras et al., 2017) was used to 

segment focal adhesions using FIJI (ImageJ2 2.9.0/1.53t with Java 1.8.0_172). Images were first 

converted to 8-bit using the Image > Type option in ImageJ. This stretches the image histogram such that 

the Weka training is being performed on relative intensities, rather than on the original 16-bit raw 

intensities. Manual annotations on Cell 1 were used to create a trained classifier model that implements 

a Fast Random Forest model on the Gaussian blur, Sobel filter, Hessian, Difference of gaussians, and 

Membrane projects features. See Data Availability for the trained model and training data. This trained 

model was then applied to both Cell 1 and Cell 2 to create a binary image segmenting all focal adhesions. 

This binary mask was combined with the original 16-bit images to measure properties of the focal 

adhesions. The focal adhesion images were binarized with 80% of an Otsu-calculated threshold to find 

the boundary of each cell. The binary mask from the Weka plugin was masked by this cell boundary to 

remove any speckles from the coverslip. Objects smaller than 0.25 µm2 were removed as spurious 

detections (Winograd-Katz et al., 2009) and holes in the objects were filled. The MATLAB function 

regionprops was used to calculate the area and centroid of each object. Objects smaller than 0.5 µm2 

were considered “immature” adhesions in Fig. 4D while objects with a centroid within 2 µm of the edge 

were considered “immature” adhesions in Fig. 4E. 
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